科目: 来源: 题型:
【题目】“勾股定理”在西方被称为“毕达哥拉斯定理”.三国时期,吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个大正方形,若直角三角形中较小的锐角,现在向该正方形区域内随机地投掷100枚飞镖,则估计飞镖落在区域1的枚数最有可能是( )
A.30B.40C.50D.60
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,已知直线l的参数方程是(t为参数),以O为极点,x轴正半轴为极轴的极坐标系中,圆C的极坐标方程为.
(1)求直线l的普通方程和圆C的直角坐标方程;
(2)由直线l上的点向圆C引切线,求切线长的最小值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知函数,满足.设为上任一点,过作的切线,其斜率满足
(1)求函数的解析式;
(2)若数列满足.设为正常数.
①求;
②若不等式对任意的恒成立,则实数是否存在最大值?若存在,请求出这个值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆是椭圆内任一点.设经过的两条不同直线分别于椭圆交于点记的斜率分别为
(1)当经过椭圆右焦点且为中点时,求:
①椭圆的标准方程;
②四边形面积的取值范围.
(2)当时,若点重合于点,且.求证:直线过定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】“金镶玉”是北京奥运会的奖牌设计所采用的式样,喻示中国传统文化中的“金玉良缘”,体现了中国人对奥林匹克精神的礼赞和对运动员的褒奖.它的设计方案,创意十分新颖,突破了以往任何一届奥运会奖牌设计单一材质的传统,又融入了典型的中国文化元素,是中国文化与体育精神完美结合的载体.现有一矩形玉片,为毫米,为32毫米,为的中点.现要开槽镶嵌金丝,将其加工为镶金工艺品,如图,金丝部分为优弧和线段其中优弧所在圆的圆心为,圆与矩形的边分别相切于点以及点在线段上(在的左侧),分别于圆相切于点且.若优弧部分镶嵌的金丝每毫米造价为元(),线段部分镶嵌的金丝每毫米造价为元.记锐角镶嵌金丝的总造价为元.
(1)试表示出关于的函数并写出的范围;
(2)当镶嵌金丝的总造价最低时,求出四边形的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,左上面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实以及黄实,并且利用勾股(股勾)朱实黄实弦实,化简得勾股弦,设勾股中勾股比为,若向弦图内随机抛掷颗图钉,则落在黄色图形内的图钉数大约为_______________.
查看答案和解析>>
科目: 来源: 题型:
【题目】近几年,我国鲜切花产业得到了快速发展,相关部门制定了鲜切花产品行业等级标准,统一使用综合指标值进行衡量,如下表所示.某花卉生产基地准备购进一套新型的生产线,现进行设备试用,分别从新旧两条生产线加工的产品中选取30个样品进行等级评定,整理成如图所示的茎叶图.
综合指标 | |||
质量等级 | 三级 | 二级 | 一级 |
(Ⅰ)根据茎叶图比较两条生产线加工的产品的综合指标值的平均值及分散程度(直接给出结论即可);
(Ⅱ)若从等级为三级的样品中随机选取3个进行生产流程调查,其中来自新型生产线的样品个数为,求的分布列;
(Ⅲ)根据该花卉生产基地的生产记录,原有生产线加工的产品的单件平均利润为4元,产品的销售率(某等级产品的销量与产量的比值)及产品售价如下表:
三级花 | 二级花 | 一级花 | |
销售率 | |||
单件售价 | 12元 | 16元 | 20元 |
预计该新型生产线加工的鲜切花单件产品的成本为span>10元,日产量3000件.因为鲜切花产品的保鲜特点,未售出的产品统一按原售价的50%全部处理完.如果仅从单件产品利润的角度考虑,该生产基地是否需要引进该新型生产线?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com