科目: 来源: 题型:
【题目】移动支付(支付宝支付,微信支付等)开创了新的支付方式,使电子货币开始普及,为了了解习惯使用移动支付方式是否与年龄有关,对某地200人进行了问卷调查,得到数据如下:60岁以上的人群中,习惯使用移动支付的人数为30人;60岁及以下的人群中,不习惯使用移动支付的人数为40人.已知在全部200人中,随机抽取一人,抽到习惯使用移动支付的人的概率为0.6.
(1)完成如下的列联表,并判断是否有的把握认为习惯使用移动支付与年龄有关,并说明理由.
习惯使用移动支付 | 不习惯使用移动支付 | 合计(人数) | |
60岁以上 | |||
60岁及以下 | |||
合计(人数) | 200 |
(2)在习惯使用移动支付的60岁以上的人群中,每月移动支付的金额如下表:
每月支付金额 | 300以上 | |||
人数 | 10 | 20 | 30 |
现采用分层抽样的方法从中抽取9人,再从这9人中随机抽取4人,记4人中每月移动支付金额超过3000元的人数为,求的分布列及数学期望.
附:,其中.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在直角中,,通过以直线为轴顺时针旋转得到().点为斜边上一点.点为线段上一点,且.
(1)证明:平面;
(2)当直线与平面所成的角取最大值时,求二面角的正弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):
若分数不低于95分,则称该员工的成绩为“优秀”.
(1)从这20人中任取3人,求恰有1人成绩“优秀”的概率;
(2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.
组别 | 分组 | 频数 | 频率 | |
1 | ||||
2 | ||||
3 | ||||
4 |
①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);
②若从所有员工中任选3人,记表示抽到的员工成绩为“优秀”的人数,求的分布列和数学期望.
查看答案和解析>>
科目: 来源: 题型:
【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):若分数不低于95分,则称该员工的成绩为“优秀”.
组别 | 分组 | 频数 | 频率 | |
1 | ||||
2 | ||||
3 | ||||
4 |
(Ⅰ)从这20人中成绩为“优秀”的员工中任取2人,求恰有1人的分数为96的概率;
(Ⅱ)根据这20人的分数补全频率分布表和频率分布直方图,并根据频率分布直方图估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表).
查看答案和解析>>
科目: 来源: 题型:
【题目】已知动圆Q经过定点,且与定直线相切(其中a为常数,且).记动圆圆心Q的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线?
(2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于M,N两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com