相关习题
 0  266496  266504  266510  266514  266520  266522  266526  266532  266534  266540  266546  266550  266552  266556  266562  266564  266570  266574  266576  266580  266582  266586  266588  266590  266591  266592  266594  266595  266596  266598  266600  266604  266606  266610  266612  266616  266622  266624  266630  266634  266636  266640  266646  266652  266654  266660  266664  266666  266669 

科目: 来源: 题型:

【题目】移动支付(支付宝支付,微信支付等)开创了新的支付方式,使电子货币开始普及,为了了解习惯使用移动支付方式是否与年龄有关,对某地200人进行了问卷调查,得到数据如下:60岁以上的人群中,习惯使用移动支付的人数为30人;60岁及以下的人群中,不习惯使用移动支付的人数为40.已知在全部200人中,随机抽取一人,抽到习惯使用移动支付的人的概率为0.6.

1)完成如下的列联表,并判断是否有的把握认为习惯使用移动支付与年龄有关,并说明理由.

习惯使用移动支付

不习惯使用移动支付

合计(人数)

60岁以上

60岁及以下

合计(人数)

200

2)在习惯使用移动支付的60岁以上的人群中,每月移动支付的金额如下表:

每月支付金额

300以上

人数

10

20

30

现采用分层抽样的方法从中抽取9人,再从这9人中随机抽取4人,记4人中每月移动支付金额超过3000元的人数为,求的分布列及数学期望.

附:,其中.

0.100

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】如图所示的多面体的底面为直角梯形,四边形为矩形,且分别为的中点.

1)求证:平面

2)求直线与平面所成角的余弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数),的导数.

1)当时,令的导数.证明:在区间存在唯一的极小值点;

2)已知函数上单调递减,求的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在直角中,通过以直线为轴顺时针旋转得到(.为斜边上一点.为线段上一点,且.

1)证明:平面

2)当直线与平面所成的角取最大值时,求二面角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):

若分数不低于95分,则称该员工的成绩为优秀”.

1)从这20人中任取3人,求恰有1人成绩优秀的概率;

2)根据这20人的分数补全下方的频率分布表和频率分布直方图,并根据频率分布直方图解决下面的问题.

组别

分组

频数

频率

1

2

3

4

①估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表);

②若从所有员工中任选3人,记表示抽到的员工成绩为优秀的人数,求的分布列和数学期望.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数,讨论的单调性;

(Ⅱ)若函数的导数的两个零点从小到大依次为,证明:.

查看答案和解析>>

科目: 来源: 题型:

【题目】某大型单位举行了一次全体员工都参加的考试,从中随机抽取了20人的分数.以下茎叶图记录了他们的考试分数(以十位数字为茎,个位数字为叶):若分数不低于95分,则称该员工的成绩为“优秀”.

组别

分组

频数

频率

1

2

3

4

(Ⅰ)从这20人中成绩为“优秀”的员工中任取2人,求恰有1人的分数为96的概率;

(Ⅱ)根据这20人的分数补全频率分布表和频率分布直方图,并根据频率分布直方图估计所有员工的平均分数(同一组中的数据用该组区间的中点值作代表).

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数.

1)讨论的单调性;

2)若,设,证明:,使.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知动圆Q经过定点,且与定直线相切(其中a为常数,且.记动圆圆心Q的轨迹为曲线C.

1)求C的方程,并说明C是什么曲线?

2)设点P的坐标为,过点P作曲线C的切线,切点为A,若过点P的直线m与曲线C交于MN两点,则是否存在直线m,使得?若存在,求出直线m斜率的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在三棱柱中,,且.

1)求证:平面平面

2)设二面角的大小为,求的值.

查看答案和解析>>

同步练习册答案