相关习题
 0  266515  266523  266529  266533  266539  266541  266545  266551  266553  266559  266565  266569  266571  266575  266581  266583  266589  266593  266595  266599  266601  266605  266607  266609  266610  266611  266613  266614  266615  266617  266619  266623  266625  266629  266631  266635  266641  266643  266649  266653  266655  266659  266665  266669 

科目: 来源: 题型:

【题目】某公园有一块边长为3百米的正三角形空地,拟将它分割成面积相等的三个区域,用来种植三种花卉.方案是:先建造一条直道分成面积之比为的两部分(点DE分别在边上);再取的中点M,建造直道(如图).(单位:百米).

1)分别求关于x的函数关系式;

2)试确定点D的位置,使两条直道的长度之和最小,并求出最小值.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,已知圆C,椭圆E)的右顶点A在圆C上,右准线与圆C相切.

1)求椭圆E的方程;

2)设过点A的直线l与圆C相交于另一点M,与椭圆E相交于另一点N.时,求直线l的方程.

查看答案和解析>>

科目: 来源: 题型:

【题目】若函数处有极值,且,则称为函数F”.

1)设函数.

①当时,求函数的极值;

②若函数存在F,求k的值;

2)已知函数ab)存在两个不相等的F,且,求a的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】为了丰富学生的课外文化生活,某中学积极探索开展课外文体活动的新途径及新形式,取得了良好的效果.为了调查学生的学习积极性与参加文体活动是否有关,学校对200名学生做了问卷调查,列联表如下:

参加文体活动

不参加文体活动

合计

学习积极性高

80

学习积极性不高

60

合计

200

已知在全部200人中随机抽取1人,抽到学习积极性不高的学生的概率为.

1)请将上面的列联表补充完整;

2)是否有99.9%的把握认为学习积极性高与参加文体活动有关?请说明你的理由;

3)若从不参加文体活动的同学中按照分层抽样的方法选取5人,再从所选出的5人中随机选取2人,求至少有1人学习积极性不高的概率.

附:

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

,其中.

查看答案和解析>>

科目: 来源: 题型:

【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为),M为该曲线上的任意一点.

1)当时,求M点的极坐标;

2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】新型冠状病毒肺炎疫情爆发以来,疫情防控牵挂着所有人的心. 某市积极响应上级部门的号召,通过沿街电子屏、微信公众号等各种渠道对此战“疫”进行了持续、深入的悬窗,帮助全体市民深入了解新冠状病毒,增强战胜疫情的信心. 为了检验大家对新冠状病毒及防控知识的了解程度,该市推出了相关的知识问卷,随机抽取了年龄在15~75岁之间的200人进行调查,并按年龄绘制频率分布直方图如图所示,把年龄落在区间内的人分别称为“青少年人”和“中老年人”. 经统计“青少年人”和“中老年人”的人数比为19:21. 其中“青少年人”中有40人对防控的相关知识了解全面,“中老年人”中对防控的相关知识了解全面和不够全面的人数之比是2:1.

1)求图中的值;

2)现采取分层抽样在中随机抽取8名市民,从8人中任选2人,求2人中至少有1人是“中老年人”的概率是多少?

3)根据已知条件,完成下面的2×2列联表,并根据统计结果判断:能够有99.9%的把握认为“中老年人”比“青少年人”更加了解防控的相关知识?

了解全面

了解不全面

合计

青少年人

中老年人

合计

附表及公式:,其中

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

查看答案和解析>>

科目: 来源: 题型:

【题目】三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明.下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实.图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用,化简,得.设勾股形中勾股比为,若向弦图内随机抛掷颗图钉(大小忽略不计),则落在黄色图形内的图钉数大约为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知椭圆E)的离心率为,且短轴的一个端点B与两焦点AC组成的三角形面积为.

(Ⅰ)求椭圆E的方程;

(Ⅱ)若点P为椭圆E上的一点,过点P作椭圆E的切线交圆O于不同的两点MN(其中MN的右侧),求四边形面积的最大值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知等腰梯形中(如图1),为线段的中点,为线段上的点,,现将四边形沿折起(如图2

1)求证:平面

2)在图2中,若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数有两个零点.

(1)求的取值范围;

(2)是否存在实数, 对于符合题意的任意,当 时均有?

若存在,求出所有的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案