相关习题
 0  266535  266543  266549  266553  266559  266561  266565  266571  266573  266579  266585  266589  266591  266595  266601  266603  266609  266613  266615  266619  266621  266625  266627  266629  266630  266631  266633  266634  266635  266637  266639  266643  266645  266649  266651  266655  266661  266663  266669  266669 

科目: 来源: 题型:

【题目】某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价(单位:千元)与销量(单位:百件)的关系如下表所示:

单价(千元)

1

1.5

2

2.5

3

销量(百件)

10

8

7

6

已知.

(Ⅰ)若变量具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程

(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与对应的产品销量的估计值,当销售数据对应的残差满足时,则称为一个好数据,现从5个销售数据中任取3个,求其中好数据的个数的分布列和数学期望.

参考公式:.

查看答案和解析>>

科目: 来源: 题型:

【题目】为两个平面,命题的充要条件是内有无数条直线与平行;命题的充要条件是内任意一条直线与平行,则下列说法正确的是( )

A.”为真命题B.”为真命题

C.”为真命题D.”为真命题

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司为了鼓励运动提高所有用户的身体素质,特推出一款运动计步数的软件,所有用户都可以通过每天累计的步数瓜分红包,大大增加了用户走步的积极性,所以该软件深受广大用户的欢迎.该公司为了研究日平均走步数和性别是否有关,统计了20191月份所有用户的日平均步数,规定日平均步数不少于8000的为运动达人,步数在8000以下的为非运动达人,采用按性别分层抽样的方式抽取了100个用户,得到如下列联表:

运动达人

非运动达人

总计

35

60

26

总计

100

1)(i)将列联表补充完整;

ii)据此列联表判断,能否有的把握认为日平均走步数和性别是否有关

2)从样本中的运动达人中抽取7人参加幸运抽奖活动,通过抽奖共产生2位幸运用户,求这2位幸运用户恰好男用户和女用户各一位的概率.

附:

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数

1)若,求实数的值.

2)若,求正实数的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】我国古代名著《张丘建算经》中记载:“今有方锥下广二丈,高三丈,欲斩末为方亭;令上方六尺:问亭方几何?”大致意思是:有一个四棱锥下底边长为二丈,高三丈;现从上面截取一段,使之成为正四棱台状方亭,且四棱台的上底边长为六尺,则该正四棱台的高为________尺,体积是_______立方尺(注:1=10尺).

查看答案和解析>>

科目: 来源: 题型:

【题目】疫情爆发以来,相关疫苗企业发挥专业优势与技术优势争分夺秒开展疫苗研发.为测试疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),选定2000个样本分成三组,测试结果如下表:

疫苗有效

673

疫苗无效

77

90

已知在全体样本中随机抽取1个,抽到组疫苗有效的概率是0.33.

1)求的值;

2)现用分层抽样的方法在全体样本中抽取360个测试结果,求组应抽取多少个?

3)已知,求疫苗能通过测试的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)写出的极坐标方程与直线的直角坐标方程;

2)曲线上是否存在不同的两点(以上两点坐标均为极坐标,),使点的距离都为3?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了解全校学生的体重情况,从全校学生中随机抽取了100 人的体重数据,得到如下频率分布直方图,以样本的频率作为总体的概率.

1)估计这100人体重数据的平均值和样本方差(结果取整数,同一组中的数据用该组区间的中点值作代表)

2)从全校学生中随机抽取3名学生,记为体重在的人数,求的分布列和数学期望;

3)由频率分布直方图可以认为,该校学生的体重近似服从正态分布.,则认为该校学生的体重是正常的.试判断该校学生的体重是否正常?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】在四棱锥中,是边长为的正三角形,为矩形,.若四棱锥的顶点均在球的球面上,则球的表面积为_____

查看答案和解析>>

科目: 来源: 题型:

【题目】在直角坐标系中,曲线的参数方程为为参数),将曲线上各点纵坐标伸长到原来的2倍(横坐标不变)得到曲线,以坐标原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

1)写出的极坐标方程与直线的直角坐标方程;

2)曲线上是否存在不同的两点(以上两点坐标均为极坐标,),使点的距离都为3?若存在,求的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案