科目: 来源: 题型:
【题目】某花圃为提高某品种花苗质量,开展技术创新活动,在A,B实验地分别用甲、乙方法培育该品种花苗.为观测其生长情况,分别在A,B试验地随机抽选各50株,对每株进行综合评分,将每株所得的综合评分制成如图所示的频率分布直方图.记综合评分为80及以上的花苗为优质花苗.
(1)求图中a的值,并求综合评分的中位数;
(2)用样本估计总体,以频率作为概率,若在A,B两块实验地随机抽取3棵花苗,求所抽取的花苗中的优质花苗数的分布列和数学期望;
(3)填写下面的列联表,并判断是否有90%的把握认为优质花苗与培育方法有关.
优质花苗 | 非优质花苗 | 合计 | |
甲培育法 | 20 | ||
乙培育法 | 10 | ||
合计 |
附:下面的临界值表仅供参考.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(参考公式:,其中.)
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:的离心率为,过其右焦点与长轴垂直的直线与椭圆在第一象限交于点,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右顶点分别为,,点是椭圆上的动点,且点与点,不重合,直线,与直线分别交于点,,求证:以线段为直径的圆过定点.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在等腰梯形中,,,,为的中点.现分别沿,将和折起,点折至点,点折至点,使得平面平面,平面平面,连接,如图2.
(Ⅰ)若平面内的动点满足平面,作出点的轨迹并证明;
(Ⅱ)求平面与平面所成锐二面角的余弦值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程是(为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点,,按照逆时针方向排列,点的极坐标为.
(Ⅰ)求点,,的直角坐标;
(Ⅱ)设为上任意一点,求点到直线的距离的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】某手机生产企业为了对研发的一批最新款手机进行合理定价,将该款手机按事先拟定的价格进行试销,得到单价(单位:千元)与销量(单位:百件)的关系如下表所示:
单价(千元) | 1 | 1.5 | 2 | 2.5 | 3 |
销量(百件) | 10 | 8 | 7 | 6 |
已知.
(Ⅰ)若变量,具有线性相关关系,求产品销量(百件)关于试销单价(千元)的线性回归方程;
(Ⅱ)用(Ⅰ)中所求的线性回归方程得到与对应的产品销量的估计值,当销售数据对应的残差满足时,则称为一个“好数据”,现从5个销售数据中任取3个,求其中“好数据”的个数的分布列和数学期望.
参考公式:,.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程是(为参数,),在以坐标原点为极点,轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程是,等边的顶点都在上,且点,,按照逆时针方向排列,点的极坐标为.
(Ⅰ)求点,,的直角坐标;
(Ⅱ)设为上任意一点,求点到直线的距离的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆:的离心率为,过其右焦点与长轴垂直的直线与椭圆在第一象限交于点,且.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆的左、右顶点分别为,,点是椭圆上的动点,且点与点,不重合,直线,与直线分别交于点,,求证:以线段为直径的圆过定点,.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,在等腰梯形中,,,,为的中点.现分别沿,将和折起,点折至点,点折至点,使得平面平面,平面平面,连接,如图2.
(Ⅰ)若、分别为、的中点,求证:平面平面;
(Ⅱ)求多面体的体积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com