相关习题
 0  266546  266554  266560  266564  266570  266572  266576  266582  266584  266590  266596  266600  266602  266606  266612  266614  266620  266624  266626  266630  266632  266636  266638  266640  266641  266642  266644  266645  266646  266648  266650  266654  266656  266660  266662  266666  266669 

科目: 来源: 题型:

【题目】已知某种新型病毒的传染能力很强,给人们生产和生活带来很大的影响,所以创新研发疫苗成了当务之急.为此,某药企加大了研发投入,市场上这种新型冠状病毒的疫苗的研发费用(百万元)和销量(万盒)的统计数据如下:

研发费用(百万元)

2

3

6

10

13

14

销量(万盒)

1

1

2

2.5

4

4.5

1)根据上表中的数据,建立关于的线性回归方程(用分数表示);

2)根据所求的回归方程,估计当研发费用为1600万元时,销售量为多少?

参考公式:.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四棱锥的底面是矩形,平面平面,且,点的中点.

1)证明:平面平面

2)若直线和平面所成的角为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目: 来源: 题型:

【题目】我国在北宋年间(公元1084年)第一次印刷出版了《算经十书》,即贾宪的《黄帝九章算法细草》,刘益的《议古根源》,秦九韶的《数书九章》,李冶的《测圆海镜》和《益古演段》,杨辉的《详解九章算法》、《日用算法》和《杨辉算法》,朱世杰的《算学启蒙》和《四元玉鉴》.这些书中涉及的很多方面都达到古代数学的高峰,其中一些算法如开立方和开四次方也是当时世界数学的高峰,哈三中图书馆中正好有这十本书,但是书名中含有字的书都已经借出,现在小张同学从剩余的书中任借两本阅读,那么他借到《数书九章》的概率为_______.

查看答案和解析>>

科目: 来源: 题型:

【题目】2022年北京冬奥运动会即第24届冬季奥林匹克运动会将在202224日至220日在北京和张家口举行,某研究机构为了了解大学生对冰壶运动的兴趣,随机从某大学生中抽取了100人进行调查,经统计男生与女生的人数比为,男生中有20人表示对冰壶运动有兴趣,女生中有15人对冰壶运动没有兴趣.

1)完成列联表,并判断能否有把握认为“对冰壶运动是否有兴趣与性别有关”?

有兴趣

没有兴趣

合计

20

15

合计

100

2)用分层抽样的方法从样本中对冰壶运动有兴趣的学生中抽取6人,求抽取的男生和女生分别为多少人?若从这6人中选取两人作为冰壶运动的宣传员,求选取的2人中恰好有1位男生和1位女生的概率.

附:,其中

0.150

0.100

0.050

0.025

0.010

2.072

2.076

3.841

5.024

6.635

查看答案和解析>>

科目: 来源: 题型:

【题目】记焦点在同一条轴上且离心率相同的椭圆为“相似椭圆”.已知椭圆,以椭圆的焦点为顶点作相似椭圆.

(Ⅰ)求椭圆的方程;

(Ⅱ)设直线与椭圆交于两点,且与椭圆仅有一个公共点,试判断的面积是否为定值(为坐标原点)若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】把方程表示的曲线作为函数的图象,则下列结论正确的是(

R上单调递减

的图像关于原点对称

的图象上的点到坐标原点的距离的最小值为3

④函数不存在零点

A.①③B.①②③C.①③④D.①②③④

查看答案和解析>>

科目: 来源: 题型:

【题目】《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该作完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,该作中有题为“李白沽酒”“李白街上走,提壶去买酒。遇店加一倍,见花喝一斗,三遇店和花,喝光壶中酒。借问此壶中,原有多少酒?”,如图为该问题的程序框图,若输出的值为0,则开始输入的值为(

A. B.

C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知函数有三个极值点

(1)求实数的取值范围;

(2)求证:.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知抛物线的准线与半椭圆相交于两点,且.

(Ⅰ)求抛物线的方程;

(Ⅱ)若点是半椭圆上一动点,过点作抛物线的两条切线,切点分别为,求面积的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知是各项均为正数的等比数列,且满足,等差数列满足.

(Ⅰ)分别求数列的通项公式;

(Ⅱ)记数列的前项和为,若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案