科目: 来源: 题型:
【题目】新冠肺炎疫情这只“黑天鹅”的出现,给经济运行带来明显影响,住宿餐饮、文体娱乐、交通运输、旅游等行业受疫情影响严重.随着复工复产的有序推动,我市某西餐厅推出线上促销活动:
A套餐(在下列食品中6选3)
西式面点:蔓越莓核桃包、南瓜芝土包、黑列巴、全麦吐司;
中式面点:豆包、桂花糕
B套餐:酱牛肉、老味烧鸡熟食类组合.
复工复产后某一周两种套餐的日销售量(单位:份)如下:
星期一 | 星期二 | 星期三 | 星期四 | 星期五 | 星期六 | 星期日 | |
A套餐 | 11 | 12 | 14 | 18 | 22 | 19 | 23 |
B套餐 | 6 | 13 | 15 | 15 | 37 | 20 | 41 |
(1)根据上面一周的销量,计算A套餐和B套餐的平均销量和方差,并根据所得数据评价两种套餐的销售情况;
(2)若某顾客购买一份A套餐,求他所选的面点中至少一种中式面点的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】随着国内疫情形势好转,暂停的中国正在重启,为了尽快提升经济、吸引顾客,哈西某商场举办购物抽奖活动,凡当日购物满1000元的顾客,可参加抽奖,规则如下:盒中有大小质地均相同5个球,其中2个红球和3个白球,不放回地依次摸出2个球,若在第一次和第二次均摸到红球则获得特等奖,否则获得纪念奖,则顾客获得特等奖的概率是_________________.
查看答案和解析>>
科目: 来源: 题型:
【题目】“新冠肺炎”疫情的控制需要根据大数据进行分析,并有针对性的采取措施.下图是甲、乙两个省份从2月7日到2月13日一周内的新增“新冠肺炎”确诊人数的折线图.根据图中甲、乙两省的数字特征进行比对,下列说法错误的是( )
A.2月7日到2月13日甲省的平均新增“新冠肺炎”确诊人数低于乙省
B.2月7日到2月13日甲省的单日新增“新冠肺炎”确诊人数最大值小于乙省
C.2月7日到2月13日乙省相对甲省的新增“新冠甲省肺炎”确诊人数的波动大
D.后四日(2月10日至13日)乙省每日新增“新冠肺炎”确诊人数均比甲省多
查看答案和解析>>
科目: 来源: 题型:
【题目】已知椭圆的长轴长为,且离心率为.
(1)求椭圆的标准方程;
(2)设椭圆的左焦点为,点是椭圆与轴负半轴的交点,经过的直线与椭圆交于点,经过且与平行的直线与椭圆交于点,若,求直线的方程.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,将的图像向右平移个单位后,再保持纵坐标不变,横坐标变为原来的2倍,得到函数的图象.
(1)求函数在上的值域及单调递增区间;
(2)若,且,,求的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】交通安全法有规定:机动车行经人行横道时,应当减速行驶;遇行人正在通过人行横道,应当停车让行.机动车行经没有交通信号的道路时,遇行人横过马路,应当避让.我们将符合这条规定的称为“礼让斑马线”,不符合这条规定的称为“不礼让斑马线”.下表是六安市某十字路口监控设备所抓拍的5个月内驾驶员“不礼让斑马线”行为的统计数据:
月份 | 1 | 2 | 3 | 4 | 5 |
“不礼让斑马线”的驾驶员人数 | 120 | 105 | 100 | 85 | 90 |
(1)根据表中所给的5个月的数据,可用线性回归模型拟合与的关系,请用相关系数加以说明;
(2)求“不礼让斑马线”的驾驶员人数关于月份之间的线性回归方程;
(3)若从4,5月份“不礼让斑马线”的驾驶员中分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的2人分别来自两个月份的概率;
参考公式:线性回归方程,其中,,.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系中,直线:(为参数,),曲线:(为参数),与相切于点,以坐标原点为极点,轴的非负半轴为极轴建立极坐标系.
(1)求的极坐标方程及点的极坐标;
(2)已知直线:与圆:交于,两点,记的面积为,的面积为,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标中,直线的参数方程为为参数,.在以坐标原点为极点、x轴的非负半轴为极轴的极坐标系中,曲线的极坐标方程为.
(1)若点在直线上,求直线的极坐标方程;
(2)已知,若点在直线上,点在曲线上,且的最小值为,求的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】函数f(x)=Asin(x+)(A>0,>0,0<<)的部分图象如图所示,又函数g(x)=f(x+).
(1)求函数g(x)的单调增区间;
(2)设ABC的内角ABC的对边分别为abc,又c=,且锐角C满足g(C)= -1,若sinB=2sinA,,求ABC的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com