1£®ÈçͼËùʾ£¬ÔÚxOyƽÃæÄÚ0£¼x£¼LµÄÇøÓòÄÚÓÐÒ»·½ÏòÊúÖ±ÏòÉϵÄÔÈÇ¿µç³¡£¬x£¾LµÄÇøÓòÄÚÓÐÒ»·½Ïò´¹Ö±ÓÚxOyƽÃæÏòÍâµÄÔÈÇ¿´Å³¡£®Ä³Ê±¿Ì£¬Ò»´øÕýµçµÄÁ£×Ó´Ó×ø±êÔ­µã£¬ÒÔÑØxÖáÕý·½ÏòµÄ³õËÙ¶Èv0½øÈëµç³¡£»Ö®ºóµÄÁíһʱ¿Ì£¬Ò»´ø¸ºµçÁ£×ÓÒÔͬÑùµÄ³õËٶȴÓ×ø±êÔ­µã½øÈëµç³¡£®Õý¡¢¸ºÁ£×Ӵӵ糡½øÈë´Å³¡Ê±Ëٶȷ½ÏòÓëµç³¡ºÍ´Å³¡±ß½çµÄ¼Ð½Ç·Ö±ðΪ60¡ãºÍ30¡ã£¬Á½Á£×ÓÔڴų¡ÖзֱðÔ˶¯°ëÖܺóÇ¡ºÃÔÚijµãÏàÓö£®ÒÑÖªÁ½Á£×ÓµÄÖØÁ¦ÒÔ¼°Á½Á£×ÓÖ®¼äµÄÏ໥×÷Óö¼¿ÉºöÂÔ²»¼Æ£®Çó£º
£¨1£©Õý¡¢¸ºÁ£×ӵıȺÉÖ®±È$\frac{{q}_{1}}{{m}_{1}}$£º$\frac{{q}_{2}}{{m}_{2}}$£»
£¨2£©Õý¡¢¸ºÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ°ë¾¶´óС£»
£¨3£©Á½Á£×ÓÏȺó½øÈëµç³¡µÄʱ¼ä²î£®

·ÖÎö £¨1£©Á£×ÓÔڵ糡ÖÐ×öÀàƽÅ×Ô˶¯£¬½«Ô˶¯·Ö½â£¬½áºÏÅ£¶ÙµÚ¶þ¶¨Âɼ´¿ÉÇó³ö£»
£¨2£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɼ´¿ÉÇó³öËüÃǵİ뾶£»
£¨3£©ÓÉÖÜÆÚÓë°ë¾¶µÄ¹Øϵ£º$T=\frac{2¦Ðr}{v}$·Ö±ðÇó³öËüÃǵÄÖÜÆÚ£¬È»ºóÇó³öËüÃǵĴų¡ÖÐÔ˶¯ µÄʱ¼ä£¬¼´¿ÉÇó³öÁ½Á£×ÓÏȺó½øÈëµç³¡µÄʱ¼ä²î£®

½â´ð ½â£º£¨1£©ÉèÁ£×Ó½ø´Å³¡·½ÏòÓë±ß½ç¼Ð½ÇΪ¦È£¬Á£×ÓÔÚˮƽ·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬Ôò£º
$t=\frac{L}{{v}_{0}}$
Ñص糡Ïߵķ½Ïò£º$a=\frac{qE}{m}$£¬vy=at
ÓÖ£º$tan¦È=\frac{{v}_{y}}{{v}_{0}}$=$\frac{qEL}{m{v}_{0}^{2}}$
ÁªÁ¢µÃ£º
$\frac{{q}_{1}}{{m}_{1}}£º\frac{{q}_{2}}{{m}_{2}}=\frac{1}{tan60¡ã}£º\frac{1}{tan30¡ã}=1£º3$
£¨2£©Á£×ÓÔڵ糡ÖеÄƫתÁ¿£º$y=\frac{1}{2}a{t}^{2}=\frac{qE{L}^{2}}{2m{v}_{0}^{2}}$¡Ø$\frac{q}{m}$
ËùÒÔ£º$\frac{{y}_{1}}{{y}_{2}}=\frac{1}{3}$
ÓÖ£º$y=\frac{{v}_{y}}{2}t$
Á½Á£×ÓÀ뿪µç³¡Î»ÖüäµÄ¾àÀ룺d=y1+y2 
´Å³¡ÖÐÔ²ÖÜÔ˶¯Ëٶȣº$v=\frac{{v}_{0}}{sin¦È}$£¬
ËùÒÔ£º${v}_{1}=\frac{{v}_{0}}{sin60¡ã}=\frac{2\sqrt{3}}{3}{v}_{0}$£¬${v}_{2}=\frac{{v}_{0}}{sin30¡ã}=2{v}_{0}$
ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦µÃ£º$qvB=\frac{m{v}^{2}}{r}$£¬
µÃ£º$r=\frac{mv}{qB}$£¬
ËùÒÔ£º$\frac{{r}_{1}}{{r}_{2}}=\frac{\sqrt{3}}{1}$
¸ù¾ÝÌâÒâ×÷³öÔ˶¯¹ì¼££¬Á½Á£×ÓÏàÓöÔÚPµã£¬
Óɼ¸ºÎ¹Øϵ¿ÉµÃ£º
2r1=dsin60¡ã
2r2=dsin30¡ã
ÁªÁ¢½âµÃ£º${r}_{1}=\frac{\sqrt{3}d}{4}=\frac{1}{2}L$£¬${r}_{2}=\frac{1}{4}d=\frac{\sqrt{3}}{6}L$
£¨3£©Á£×ÓÔڴų¡ÖÐÔ˶¯µÄÖÜÆÚ£º$T=\frac{2¦Ðr}{v}$
Á½Á£×ÓÔڴų¡ÖÐÔ˶¯Ê±¼ä¾ùΪ°ë¸öÖÜÆÚ£¬Ôò£ºt1=$\frac{¦Ð{r}_{1}}{{v}_{1}}=\frac{¦Ð•\frac{1}{2}L}{\frac{2\sqrt{3}}{3}{v}_{0}}=\frac{\sqrt{3}¦ÐL}{4{v}_{0}}$£¬${t}_{2}=\frac{¦Ð{r}_{2}}{{v}_{2}}=\frac{¦Ð•\frac{\sqrt{3}}{6}L}{2{v}_{0}}=\frac{\sqrt{3}¦ÐL}{12{v}_{0}}$
ÓÉÓÚÁ½Á£×ÓÔڵ糡ÖÐʱ¼äÏàͬ£¬ËùÒÔ½øµç³¡Ê±¼ä²î¼´Îª´Å³¡ÖÐÏàÓöÇ°µÄʱ¼ä²î£º
$¡÷t={t}_{1}-{t}_{2}=\frac{\sqrt{3}¦ÐL}{4{v}_{0}}-\frac{\sqrt{3}¦ÐL}{12{v}_{0}}=\frac{\sqrt{3}¦ÐL}{6{v}_{0}}$
´ð£º£¨1£©Õý¡¢¸ºÁ£×ӵıȺÉÖ®±ÈÊÇ1£º3£»
£¨2£©Õý¡¢¸ºÁ£×ÓÔڴų¡ÖÐÔ˶¯µÄ°ë¾¶´óС·Ö±ðÊÇ$\frac{1}{2}L$ºÍ$\frac{\sqrt{3}}{6}L$£»
£¨3£©Á½Á£×ÓÏȺó½øÈëµç³¡µÄʱ¼ä²îÊÇ$\frac{\sqrt{3}¦ÐL}{6{v}_{0}}$£®

µãÆÀ ¸ÃÌ⿼²é´øµçÁ£×ÓÔڵ糡ÖеÄÔ˶¯ºÍ´øµçÁ£×ÓÔڴų¡ÖеÄÔ˶¯£¬ÕýµçºÉÓ븺µçºÉËäȻƫתµÄ·½ÏòÏà·´£¬µ«ÊÇÔ˶¯µÄ¹æÂÉ»ù±¾Ïàͬ£¬¿ÉÒÔÏÈÇó³öͨʽÔÙ¾ßÌå·Ö¿ª£¬Ò²¿ÉÒÔÖ±½Ó·Ö±ðÇó³ö£¬¸ù¾Ý×Ô¼ºµÄÏ°¹ßÀ´½â´ð£¬´ð¶Ô¾ÍºÃ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

11£®ÏÂÁйØÓÚÔ²ÖÜÔ˶¯µÄ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÏòÐļÓËÙ¶ÈÊÇÃèÊö×öÔ²ÖÜÔ˶¯µÄÎïÌåÏßËٶȷ½Ïò±ä»¯¿ìÂýµÄÎïÀíÁ¿
B£®ÏòÐÄÁ¦¾ÍÊÇ×öÔ²ÖÜÔ˶¯ÎïÌåËùÊܵĺÏÍâÁ¦
C£®ÔÈËÙÔ²ÖÜÔ˶¯ÊÇÔȱäËÙÇúÏßÔ˶¯
D£®ÒòΪÏßËٶȷ½Ïòʱ¿Ì±ä»¯£¬ËùÒÔÔÈËÙÔ²ÖÜÔ˶¯²»ÊÇÔÈËÙÔ˶¯

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®2015Äê2Ô£¬ÃÀ¹ú¿Æѧ¼Ò´´Ôì³öÒ»ÖÖÀûÓÃϸ¾ú½«Ì«ÑôÄÜת»¯ÎªÒºÌåȼÁϵġ°ÈËÔìÊ÷Ò¶¡±ÏµÍ³£¬Ê¹Ì«ÑôÄÜÈ¡´úʯÓͳÉΪ¿ÉÄÜ£®¼ÙÉè¸Ã¡°ÈËÔìÊ÷Ò¶¡±¹¤×÷Ò»¶Îʱ¼äºó£¬Äܽ«10-6gµÄË®·Ö½âΪÇâÆøºÍÑõÆø£®ÒÑ֪ˮµÄÃܶȦÑ=1.0¡Á103 kg/m3¡¢Ä¦¶ûÖÊÁ¿M=1.8¡Á10-2kg/mol£¬°¢·üÙ¤µÂÂÞ³£ÊýNA=6.0¡Á1023mol-1£®ÊÔÇ󣺣¨½á¹û¾ù±£ÁôһλÓÐЧÊý×Ö£©
¢Ù±»·Ö½âµÄË®Öк¬ÓÐË®·Ö×ÓµÄ×ÜÊýN£»
¢ÚÒ»¸öË®·Ö×ÓµÄÌå»ýV£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®Ä³Í¬Ñ§ÓÃÈçͼ1ËùʾװÖÃÑо¿Îï¿éÔ˶¯Ëٶȱ仯µÄ¹æÂÉ£®
£¨1£©´ÓÖ½´øÉÏÑ¡È¡Èô¸É¼ÆÊýµã½øÐвâÁ¿£¬µÃ³ö¸÷¼ÆÊýµãµÄʱ¼ätÓëËÙ¶ÈvµÄÊý¾ÝÈç±í£º
ʱ¼ät/s00.100.200.300.400.500.60
ËÙ¶Èv/£¨ms-1£©00.160.310.450.520.580.60
Çë¸ù¾ÝʵÑéÊý¾Ý×ö³öÈçͼ2Îï¿éµÄv-tͼÏó£®
£¨2£©ÉÏÊöv-tͼÏó²»ÊÇÒ»ÌõÖ±Ïߣ¬¸Ãͬѧ¶ÔÆä×°ÖýøÐÐÁ˽øÒ»²½¼ì²é£¬ÁгöÁËÏÂÁм¸Ìõ£¬ÆäÖпÉÄÜÊÇͼÏó·¢ÉúÍäÇúÔ­ÒòµÄÊÇD
A£®³¤Ä¾°å²»¹»¹â»¬                  B£®Ã»ÓÐƽºâĦ²ÁÁ¦
C£®¹³ÂëÖÊÁ¿mûÓÐԶСÓÚÎï¿éÖÊÁ¿M      D£®À­Îï¿éµÄϸÏßÓ볤ľ°å²»Æ½ÐÐ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÈçͼËùʾÊÇÒ»¶Î¹âµ¼ÏËάµÄ¼ò»¯Í¼£¬¹âÏË×ܳ¤ÎªL£¬ÒÑÖª¹â´Ó×ó¶ËÉäÈë¹âÏßÔÚ¹âÏ˵IJàÃæÉÏÇ¡ºÃÄÜ·¢ÉúÈ«·´É䣮ÈôÒÑÖª¸Ã¹âÏ˵ÄÕÛÉäÂÊΪn£¬¹âÔÚÕæ¿ÕÖд«²¥ËÙ¶ÈΪc£¬Çó£º
¢Ù¹âÔڸùâÏËÖеÄËٶȴóС£»
¢Ú¹â´Ó×ó¶ËÉäÈë×îÖÕ´ÓÓÒ¶ËÉä³öËù¾­ÀúµÄʱ¼ä£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Ò»Áмòгºá²¨ÑØxÖáÕý·½Ïò´«²¥£¬t=0ʱ¿Ì²¨ÐÎÈçͼËùʾ£¬´Ëʱ¿Ìºó½éÖÊÖеÄPÖʵã»Øµ½Æ½ºâλÖõÄ×î¶Ìʱ¼äΪ0.2s£¬QÖʵã»Øµ½Æ½ºâλÖõÄ×î¶Ìʱ¼äΪ1s£¬ÒÑÖªt=0ʱ¿ÌP¡¢QÁ½Öʵã¶ÔƽºâλÖõÄλÒÆÏàͬ£¬Ôò£¨¡¡¡¡£©
A£®¸Ã¼òг²¨µÄÖÜÆÚΪ1.2sB£®¸Ã¼òг²¨µÄ²¨ËÙΪ0.05m/s
C£®t=0.8sʱ£¬PÖʵãµÄ¼ÓËÙ¶ÈΪÁãD£®¾­¹ý1s£¬ÖʵãQÏòÓÒÒƶ¯ÁË1m

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®¼ÙÉèµØÇò¿ÉÊÓΪÖÊÁ¿¾ùÔÈ·Ö²¼µÄÇòÌ壬ÆäÃܶÈΪ¦Ñ£®Ò»¿ÅÈËÔìµØÇòÎÀÐÇÔÚµØÇòÉÏ¿ÕÈƵØÇò×öÔÈËÙÔ²ÖÜÔ˶¯£¬¾­¹ýʱ¼ät£¬ÎÀÐÇÐгÌΪs£¬ÎÀÐÇÓëµØÇòÖÐÐÄÁ¬Ïßɨ¹ýµÄ½Ç¶ÈÊǦȻ¡¶È£¬ÍòÓÐÒýÁ¦³£ÁÁΪG£¬Ç󣺵ØÇòµÄ°ë¾¶ÎªR=s$\root{3}{\frac{3}{4¦ÐG¦Ñ{¦Èt}^{2}}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÈçͼËùʾ£¬LOO¡äL¡äΪһÕÛÏߣ¬ËüËùÐγɵÄÁ½¸ö½Ç¡ÏLOO¡äºÍ¡ÏOO¡äL¡ä¾ùΪ45¡ã£®ÕÛÏßµÄÓÒ±ßÓÐÒ»ÔÈÇ¿´Å³¡£¬Æä·½Ïò´¹Ö±ÓÚÖ½ÃæÏòÀһ±ß³¤ÎªlµÄÕý·½Ðε¼Ïß¿òÑØ´¹Ö±ÓÚOO¡äµÄ·½ÏòÒÔËÙ¶Èv×öÊúÖ±ÏòÉϵÄÔÈËÙÖ±ÏßÔ˶¯£¬ÔÚt=0ʱ¿ÌÇ¡ºÃλÓÚͼÖÐËùʾλÖã®ÒÔÄæʱÕë·½ÏòΪµ¼Ïß¿òÖеçÁ÷µÄÕý·½Ïò£¬ÔÚÏÂÃæËÄ·ùͼÖÐÄܹ»ÕýÈ·±íʾµçÁ÷-ʱ¼ä£¨I-t£©¹ØϵµÄÊÇ£¨Ê±¼äÒÔ$\frac{l}{v}$Ϊµ¥Î»£©£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÑо¿Æ½Å×Ô˶¯µÄʵÑéÖУ¬ÈÃСÇò¶à´Î´Óб²ÛÉϹöÏ£¬ÔÚ°×Ö½ÉÏÒÀ´Î¼ÇÏÂСÇòµÄλÖã¬Ä³¼×ºÍijÒҵõ½µÄ¼Ç¼ֽ·Ö±ðÈçͼËùʾ£¬´ÓͼÖÐÃ÷ÏÔ¿´³ö
¼×µÄʵÑé´íÎóÊÇ£º²Ûµ×²»Ë®Æ½£®
ÒÒµÄʵÑé´íÎóÊÇ£ºÃ¿´ÎÊÍ·ÅСÇòµÄ¸ß¶È²»Í¬£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸