精英家教网 > 高中物理 > 题目详情
3.如图所示,加速电场电压为U1,偏转电场电压为U2,B为右侧足够大的有左边界匀强磁场,一束由${\;}_{1}^{1}$H、${\;}_{1}^{2}$H组成的粒子流在O1处静止开始经U1加速,再经U2偏转后进入右侧匀强磁场,且均能从左边界离开磁场.不计粒子间相互作用,则下列说法正确的是(  )
A.两种粒子在电场中会分为两束
B.两种粒子在磁场中会分为两束
C.两种粒子进磁场位置和出磁场位置间的距离比为1:$\sqrt{2}$
D.两种粒子进磁场位置和出磁场位置间的距离都与U2无关

分析 微粒进入偏转电场时的速度是由加速电场加速获得的,求解偏转位移判断电场中的运动情况;
根据动能定理,结合粒子进入磁场中做匀速圆周运动,根据牛顿第二定律和数学知识结合,从而求解半径的综合表达式分析磁场中是否分开;
再由几何关系,结合洛伦兹力提供向心力求出进磁场位置和出磁场位置间的距离的表达式,从而即可求解.

解答 解:A、同种带电粒子在同一地点经相同电场加速,依据动能定理,则有:qU1=$\frac{1}{2}m{v}^{2}$,解得v=$\sqrt{\frac{2q{U}_{1}}{m}}$;设极板的长度为L、间距为d,粒子在电场中的偏转位移为y,
根据类平抛运动可得:y=$\frac{1}{2}a{t}^{2}$=$\frac{1}{2}×\frac{q{U}_{2}}{md}×\frac{{L}^{2}}{{v}^{2}}$=$\frac{{U}_{2}{L}^{2}}{4{U}_{1}d}$,可见当二者进入同一偏转电场,在电场中偏转位移相等,不会分成两束,故A错误;
B、两种粒子从电场中同一点C以相同的速度方向O进入磁场做圆周运动,

从O1到C点,由动能定理,则有:(U1+U02C)q=$\frac{1}{2}m{v}_{C}^{2}$,
圆周运动半径r=$\frac{m{v}_{C}}{qB}$=$\frac{1}{B}\sqrt{\frac{2m({U}_{1}+{U}_{02C})}{q}}$,即半径r与$\sqrt{\frac{m}{q}}$成正比,两种粒子的半径之比为1:$\sqrt{2}$,两种粒子在磁场中会分为两束,故B正确;
C、粒子进入磁场位置和出磁场位置间的距离y=2rsinθ∝r,所以它们的距离之比为1:$\sqrt{2}$,故C正确;
D、粒子进入磁场后,做匀速圆周运动,设速度方向与边界的夹角为θ,则运动半径r=$\frac{m{v}_{C}}{qB}$=$\frac{mv}{qBsinθ}$,设两种粒子进磁场位置和出磁场位置间的距离为x,则x=2rsinθ=$\frac{2mv}{qB}$,而v=$\sqrt{\frac{2q{U}_{1}}{m}}$,所以x与U2无关,故D正确;
故选:BCD.

点评 对于带电粒子在磁场中的运动情况分析,一般是确定圆心位置,根据几何关系求半径,结合洛伦兹力提供向心力求解未知量;根据周期公式结合轨迹对应的圆心角求时间;对于带电粒子在电场中运动时,一般是按类平抛运动的知识进行解答.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

16.如图所示,完全相同的三个金属小球a、b、c位于距离地面同一高度处,现以等大的初速度使三个小球同时开始运动,分别做平抛、竖直上抛和斜抛运动,忽略空气阻力.以下说法不正确的是(  )
A.落地之前,三个小球均做匀变速运动
B.落地之前,三个小球在任意相等时间内动量的增量相同
C.b、c所能达到的最大高度相同
D.三个小球落地时的速度大小相等

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

17.把两个单摆分别拉起一定角度后同时释放,均做简谐运动.对比两单摆的振动,以下说法正确的是(  )
A.若只是摆球质量不同,则质量大的周期长
B.若只是摆球质量不同,则质量小的周期长
C.若只是摆长不同,则摆长长的周期长
D.若只是摆长不同,则摆长短的周期长

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

14.如图所示,一个半径为R=1.00m的$\frac{1}{4}$粗糙圆孤轨道,固定在竖直平面内,其下端切线是水平的,轨道下端距地面高度为h=1.25m在轨道末端放有质量为mB=0.05kg的小球(视为质点),B左侧轨道下装有微型传感器,另一质量为mA=0.10kg的小球A(也视为质点)由轨道上端点从静止开始释放,运动到轨道最低处时,传感器显示读数为2.6N,A与B发生正碰,碰后B小球水平飞出,落到地面时的水平位移为s=1.00m,不计空气阻力,重力加速度取g=10m/s2.求:
(1)小球A运动到轨道最低处时的速度大小
(2)小球A在碰前克服摩擦力所做的功;
(3)A与B碰撞过程中,系统损失的机械能.

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

1.如图甲所示,用“碰撞实验器”可以验证动量守恒定律,即研究两个小球在轨道水平部分碰撞前后的动量关系

(1)图中O点是小球抛出点在地面上的垂直投影.实验时,先让入射球m1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP.然后,把被碰小球m2静置于轨道的水平部分,再将入射球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复.
接下来要完成的必要步骤是ADE.(多选.填选项前的字母)
A.用天平测量两个小球的质量m1、m2
B.测量小球m1开始释放高度h
C.测量抛出点距地面的高度H
D.分别找到m1、m2相碰后平均落地点的位置M、N
E.测量平抛射程OM、ON
(2)经测定,m1=45.0g,m2=7.5g,小球落地点的平均位置距O点的距离如图乙所示.碰撞前后m1的动量分别为p1与p1′,则p1:p1′=14:11;若碰撞结束时m2的动量为p2′,则p1′:p2′=11:2.9.实验结果说明,碰撞前后总动量的比值$\frac{p1}{p1′+p2′}$=1.01.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

8.在倾角为θ的固定光滑斜面上有两个用轻弹簧相连接的物块A、B,它们的质量分别为m1、m2,弹簧劲度系数为k,C为一固定挡板,系统处于静止状态.现用一平行于斜面向上的恒力F拉物块A使之向上运动,当物块B刚要离开挡板C时,物块A沿斜面运动的距离为d,速度为v,则(  )
A.此过程中拉力F做功的大小等于物块A动能的增加量
B.当物块B刚要离开挡板时,受力满足m2gsinθ=kd
C.当物块B刚要离开挡板时,物块A的加速度为$\frac{F-kd}{{m}_{1}}$
D.此过程中弹簧弹性势能的增加量为Fd-$\frac{1}{2}$m1v2-m1gdsinθ

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

15.如图,AB是长度s=0.5m的水平轨道,B端与半径为R=0.1m的光滑半圆轨道BCD相切,半圆的直径BD垂直.A端左侧固定一个倾角θ=30°的光滑斜面,连接处顺滑,穿过定滑轮(足够高)的轻绳两端分别系着小物块a和b,a的质量m1=1kg.开始时将b按压在地面不动,a位于斜面上高h=0.5m的地方,此时滑轮左边的绳子竖直而右边的绳子突然断开,a继续沿着水平面运动,然后滑上轨道BCD,已知a与地面的动摩擦因数μ=0.2,g取10m/s2
(1)若a到达C点时的速度vc=1m/s,求a进入BD轨道的B点时对轨道压力大小;
(2)欲使a能滑上BC轨道但不会从最高点D滑出,求b的质量m2的取值范围.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

12.如图,在-a≤x≤0区域内存在与y轴平行的匀强电场,在0≤x≤a区域内存在与xy平面垂直的匀强磁场,电场、磁场方向如图所示.粒子源位于x坐标轴上,在xy平面内发射出大量同种带正电粒子,所有粒子的初速度方向均沿x轴正方向.不计粒子重力.
(1)若带电粒子先后穿越电场、磁场后,速度方向仍与x轴平行,求带电粒子的初速度v0与电场强度E、磁感应强度B三者之间的关系;
(2)相关物理量取值如下:电场强度E=36V/m,带电粒子的初速度v0=18m/s、电荷量q=1×10-2C、质量m=3×10-4kg,a=0.36m.通过调整磁感应强度B的大小,能否使带电粒子到达坐标原点O?(sin37°=0.6、cos37°=0.8)

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

13.如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环.小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力(  )
A.一直做负功B.一直做正功
C.始终垂直速度方向D.始终背离大圆环圆心

查看答案和解析>>

同步练习册答案