精英家教网 > 高中物理 > 题目详情
13.如图所示,质量为M的滑块A放在一端带有滑轮的粗糙长木板上,平衡摩擦后,安装在水平桌边缘,1、2是固定在木板上的两个光电门,中心间的距离为L.滑块A上固定一宽度为d的遮光长,在质量为m的重物B牵引下从木板的顶端由静止滑下,光电门1、2记录的遮光时间分别为△t1和△t2
(1)用此装置验证牛顿第二定律,且认为A受到外力的合力等于B的重力,则实验必须满足的条件还有m<<M;实验测得的加速度为$\frac{(\frac{d}{△{t}_{2}})^{2}-(\frac{d}{△{t}_{1}})^{2}}{2L}$(用上述字母表示);
(2)用此装置研究外力做功与物体动能的改变,以A为研究对象,外力做功的表达式是mgL,动能改变量是$\frac{1}{2}m[(\frac{d}{△{t}_{2}})^{2}-(\frac{d}{△{t}_{1}})^{2}]$.

分析 对整体分析,根据牛顿第二定律得出加速度,隔离对A分析,结合牛顿第二定律得出拉力的表达式,分析B的重力等于A所受合力满足的条件.
根据下降的高度求出外力做功的表达式,结合极短时间内的平均速度等于瞬时速度求出滑块通过光电门1和光电门2的瞬时速度,从而得出动能的该变量.

解答 解:(1)对整体分析,加速度a=$\frac{mg}{M+m}$,隔离对A分析,根据牛顿第二定律得,绳子的拉力F=Ma=$\frac{Mmg}{M+m}$=$\frac{mg}{1+\frac{m}{M}}$,当m<<M时,A受到的外力的合力等于B的重力.
滑块通过光电门1和2的瞬时速度分别为${v}_{1}=\frac{d}{△{t}_{1}}$,${v}_{2}=\frac{d}{△{t}_{2}}$,
根据速度位移公式得,加速度a=$\frac{{{v}_{2}}^{2}-{{v}_{1}}^{2}}{2L}$=$\frac{(\frac{d}{△{t}_{2}})^{2}-(\frac{d}{△{t}_{1}})^{2}}{2L}$.
(2)外力做功的表达式W=mgL,动能该变量为△Ek=$\frac{1}{2}m{{v}_{2}}^{2}-\frac{1}{2}m{{v}_{1}}^{2}$=$\frac{1}{2}m[(\frac{d}{△{t}_{2}})^{2}-(\frac{d}{△{t}_{1}})^{2}]$.
故答案为:(1)m<<M,$\frac{(\frac{d}{△{t}_{2}})^{2}-(\frac{d}{△{t}_{1}})^{2}}{2L}$;(2)mgL,$\frac{1}{2}m[(\frac{d}{△{t}_{2}})^{2}-(\frac{d}{△{t}_{1}})^{2}]$.

点评 解决本题的关键知道验证牛顿第二定律实验中的两个认为:1、认为绳子的拉力等于滑块的合力,(前提需平衡摩擦力),2、认为重物的拉力等于绳子的拉力,(前提是重物的质量远小于滑块的质量).

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

15.某电视台的一档娱乐节目中有一个挑战项目,场地设施如图所示,AB为水平直轨道,上面安装有电动悬挂器,可以载人运动,水面上漂浮着一个半径为R为2m,角速度为ω,铺有海绵垫的转盘,转盘的轴心离平台的水平距离为L为8m,平台边缘与转盘平面的高度差为H为5m.选手抓住悬挂器,可以在电动机带动下,从A点下方的平台边缘处沿水平方向做初速度为零,加速度为2m/s2的匀加速直线运动,当速度加到4m/s时,悬挂器不再加速保持匀速直线运动.选手必在合适的位置放手才能顺利落在转盘上.设人的质量为m(不计身高大小),人与转盘间的最大静摩擦力等于滑动摩擦力,其中人与转盘之间的动摩擦因数为μ,重力加速度为g.
(1)假设选手落到转盘上瞬间相对转盘速度立即变为零,为保证他落在任何位置都不会被甩下转盘,转盘的角速度ω应在什么范围?
(2)选手从平台出发后经过多长时间放手才能落到转盘上?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

4.静置于光滑水平面上的两相同滑块A与B紧靠在一起,长度均为L=1.25m,小滑块C静置于A的左端.已知C与A、B间的动摩擦因数均为μ=0.5,A、B、C质量均为m=1kg,现对C施加F=10N的水平恒力,将C从A的左端拉到B的右端的过程中,g取10m/s2.求:
(1)A对B做的功;
(2)B发生的位移大小.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

1.如图所示,某同学将一条形磁铁放在水平转盘上,磁铁随转盘一起转动,将一磁感应强度传感器固定在转盘旁边,传感器内有一小线圈,当穿过线圈的磁通量最大,当转盘(及磁铁)匀速转动时,该同学在计算机上得到了如图所示的图象,结合图象可得(  )
A.在t=0.1s时,线圈内产生的感应电流的方向发生了变化
B.在t=0.15s时,线圈内产生的感应电流的方向发生了变化
C.在t=0.1s时,线圈内产生的感应电流最大
D.在t=0.15s时,线圈内产生的感应电流最大

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

8.如图所示,倾角 θ=37°的光滑且足够长的斜面固定在水平面上,在斜面顶端固定一个轮半径和质量不计的光滑定滑轮 D,质量均为m=1kg 的物体A和B用一劲度系数k=240N/m 的轻弹簧连接,物体 B 被位于斜面底端且垂直于斜面的挡板 P 挡住.用一不可伸长的轻绳使物体 A 跨过定滑轮与质量为 M 的小环 C 连接,小环 C 穿过竖直固定的光滑均匀细杆,当整个系统静止时,环 C 位 于 Q 处,绳与细杆的夹角 α=53°,且物体 B 对挡板 P 的压力恰好为零.图中 SD 水平且长度 为 d=0.2m,位置 R 与位置 Q 关于位置 S 对称,轻弹簧和定滑轮右侧的绳均与斜面平行.现 让环 C 从位置 R 由静止释放,sin37°=0.6,cos37°=0.8,g 取 10m/s2
求:
(1)小环 C 的质量 M;
(2)小环 C 通过位置 S 时的动能 Ek及环从位置 R 运动到位置 S 的过程中轻绳对环做的功 WT
(3)小环 C 运动到位置 Q 的速率 v.

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

18.在“验证牛顿第二定律”的实验中,采用如图1所示的实验装置,小车及砝码的质量用M表示,盘及盘中砝码的质量用m表示,小车的加速度可由小车后拖动的纸带打上的点计算出.

(1)当M与m的大小关系满足M>>m时,才可以认为绳对小车的拉力大小等于托盘及盘中砝码的重力.
(2)一组同学在做加速度与质量的关系实验时,保持盘及盘中砝码的质量一定,改变小车及车中砝码的质量,测出相应的加速度,采用图象法处理数据.为了比较容易地检查出加速度a与质量M的关系,应该作a与$\frac{1}{M}$的图象.
(3)如图2(a)中,甲同学根据测量数据做出的a-F图线,说明实验存在的问题是平衡摩擦力过度或木板的倾角过大.
(4)乙、丙同学用同一装置做实验,画出了各自得到的a-F图线,如图2(b)所示,说明两个同学做实验时的哪一个物理量取值不同?答:质量M.
(5)已知打点计时器使用的交流电频率为50Hz,每相邻两个计数点间还有4个点未画出,利用图3给出的数据可求出小车下滑的加速度a=1.58m/s2.(结果保留3位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

5.随着经济的快速发展,我国的汽车保有量也在快速增加,仅次于美国,排名世界第二,汽车饰品作为其附加产业也得到了发展.如图所示,有一辆私家车在前挡玻璃内悬挂了一个“平安符”挂件,当汽车转弯时,在窗门紧闭的汽车内,驾驶员发现挂件向右倾斜并且倾斜程度正在缓慢增加,已知汽车的转弯半径一定,则下列说法正确的是(  )
A.汽车可能正在向右加速转弯B.汽车可能正在向右减速转弯
C.汽车可能正在向左加速转弯D.汽车可能正在向左减速转弯

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

2.在“探究滑块速度随时间变化的规律”实验中,某研究性学习小组在一端装有定滑轮的长木板的中段粘上均匀的薄砂纸,砂面朝上,还选用了质量为100g的长方体木块、一段较长的棉绳、一盒钩码(单个质量为50g)、电磁打点计时器、纸带、复写纸、学生电源和导线若干,实验装置如图甲所示,实验时在小车上加载四个钩码,在棉绳的右端悬挂三个钩码,接通电源,释放小车,成功打出了一条纸带,纸带的局部如图乙,大部分点的时刻和速度的对应关系已经描绘在图丙里.

(1)根据图乙,请计算0.20s时刻点的瞬时速度,填入表中.
时刻(s)0.200.240.280.320.36
速度(m/s)0.660.750.870.931.01
(2)根据上述表格中的五组数据,请在图丙中描绘出对应的五个点,再根据图中所有的点,描绘出最能反映出木块运动性质的v-t图象.

(3)根据上述图象,请说明滑块的运动性质:滑块先做匀加速运动,接着做匀速运动,最后再做匀加速运动
(4)在实验结束后,同学们对实验进行了反思:A同学认为本实验有必要在左端垫上小垫块以平衡摩擦力,B同学认为没有必要,你认为B的观点正确; C同学认为本实验中三个钩码质量太大,有必要换质量更小的配重,以满足“重物质量m远小于滑块质量M”这一条件,D同学认为没有必要,你认为D的观点正确;同学们都认为可以由实验数据粗略计算出木块与砂纸之间的动摩擦因数,其值为0.50(保留两位有效数字).

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

3.如图所示,质量为m、长为L的直导线用两绝缘细线悬挂于O、O′(OO′连线水平),并处于匀强磁场中.当导线中通以沿x正方向的电流I,且导线保持静止时,悬线与竖直方向夹角为θ.则磁感应强度方向和大小可能为(  )
A.z轴正向,$\frac{mg}{IL}$tanθB.沿悬线向上,$\frac{mg}{IL}$sinθ
C.z轴负向,$\frac{mg}{IL}$tanθD.y轴正向,$\frac{mg}{IL}$

查看答案和解析>>

同步练习册答案