精英家教网 > 高中物理 > 题目详情
1.一列简谐横波沿x轴方向传播,在t=0时刻的波形如图所示,t=0.1s时,波形上P点的速度恰好第一次达到与t=0时刻的速度等值反向.若波沿x轴正方向传播,则波速v=20m/s;若波沿x轴负方向传播,则波速v=30m/s.

分析 利用质点带动法判断P点此刻的振动方向,根据质点P第一次达到与t=0时刻的速度等值反向的 时间与周期,读出波长,即可求得波速.

解答 解:(1)t=0时刻,x=0处的质点位于平衡位置,若波沿x轴正方向传播,则x=0处质点正在向下运动,
设该波的周期为T,则波动方程为:
$y=-Asinω(t-\frac{x}{v})=-A•sin\frac{2π}{T}(t-\frac{x}{v})$
由波的平移法可知,t=0时刻P点运动的方向向上,所以:${y}_{P}=-A•sin\frac{2π}{T}(t-\frac{{x}_{P}}{v})$,将P点纵坐标的位置代入可得:$\frac{{x}_{P}}{v}=\frac{5}{12}T$
又:λ=vT
所以:${x}_{P}=\frac{5}{12}T×v=\frac{5}{12}λ$=$\frac{5}{12}×6=2.5$m
同理可知,与P位移相等的点的平衡位置:$x′=\frac{1}{12}T×v=\frac{1}{12}λ=\frac{1}{12}×6=0.5$m
所以,若波沿x轴正方向传播,则经过0.1s的时间,x′处质点的振动传播到x=2.5m处的P点,高波传播的距离是:△x1=x-x′=2.5-0.5=2.0m
所以该波的传播速度:$v=\frac{△{x}_{1}}{t}=\frac{2.0}{0.1}=20$m/s
(2)t=0时刻,x=0处的质点位于平衡位置,若波沿x轴负方向传播,则x=0处质点正在向上运动,设该波的周期为T,则波动方程为:
$y=Asinω(t-\frac{x}{v})=A•sin\frac{2π}{T}(t-\frac{x}{v})$
由波的平移法可知,t=0时刻P点运动的方向向下,所以:${y}_{P}=A•sin\frac{2π}{T}(t-\frac{{x}_{P}}{v})$,
若t=0.1s时,波形上P点的速度恰好第一次达到与t=0时刻的速度等值反向,则由波形图可知,一定是x=4.5m--x=6m处某一点的振动传播到P点,将波动方程:
${y}_{x″}=A•sin\frac{2π}{T}(t-\frac{x″}{v})$
又:yx″=-0.01m
联立解得:$x″=\frac{11}{12}T•v=\frac{11}{12}λ=\frac{11}{12}×6$=5.5m
所以,若波沿x轴负方向传播,则经过0.1s的时间,x″处质点的振动传播到x=2.5m处的P点,高波传播的距离是:△x2=x″-x=5.5-2.5=3.0m
所以该波的传播速度:$v=\frac{△{x}_{1}}{t}=\frac{3.0}{0.1}=30$m/s
故答案为:20,30

点评 本题考查了波动方程和波传播的特点,能根据质点带动法判断质点振动方向.利用波形的平移法求解波传播的时间.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

6.如图所示,两物块A、B置于光滑水平面上,质量分别为m和2m,一轻质弹簧两端分别固定在两物块上,开始时弹簧处于拉伸状态,用手固定两物块.现在先释放物块B,当物块B的速度大小为3v时,再释放物块A,此时弹簧仍处于拉伸状态;当物块A的速度大小为v时,弹簧刚好恢复原长.自始至终弹簧都未超出弹性限度.求:
①弹簧刚恢复原长时,物块B的速度大小;
②两物块相距最近时,弹簧的弹性势能大小(设弹簧处于原长时弹性势能为零).

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

7.对于经典力学理论,下列说法中正确的是(  )
A.经典力学是物理学和天文学的基础,也是现代工程技术的理论基础
B.经典力学的理论体系是经过几代科学家长期的探索,历经曲折才建立起来的
C.经典力学具有丰富的理论成果,也建立了验证科学的方法体系
D.当物体运动速度很大(v→c)、引力很强、活动空间很小(微观)时,经典力学理论所得的结果与实验结果之间出现了较大的偏差

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

9.一定质量的理想气体的P-V图象如图所示,下列说法中正确的是(  )
A.气体从状态A变化到状态B,为等温变化
B.状态B时分子的平均动能大于状态A时的平均动能
C.由A到B过程中,气体对外做功
D.由A到B过程中,气体放出热量

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.某实验小组设计了如图1所示的实验装置,一根轻质细绳绕过定滑轮A和轻质动滑轮B后,一端与力传感器相连,另一端与小车相连.动滑轮B下面悬挂一个钩码.

某次实验中,由静止开始向右拉动纸带的右端,使小车向右加速运动,由传感器测出细绳对小车的拉力为F=0.69N,打点计时器打出的纸带如图2所示,打点计时器使用交流电的频率为f=50Hz,重力加速度为g=10m/s2,试回答下列问题:
(1)打点计时器打下标号为“3”的计数点时,小车的速度v3=1.62m/s (保留3位有效数字);
(2)要求尽可能多的利用图2中的数据计算小车运动的加速度大小a,结果是a=3.0m/s2(保留1位小数);
(3)不计轻绳与滑轮及轴与滑轮之间的摩擦,动滑轮B下面所悬挂钩码的质量m=0.12kg.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

6.下列说法正确的是(  )
A.冬天,在结冰的公路上洒上沙子可以防滑
B.电磁灶可以加热砂锅里的食物
C.加油站工作人员穿化纤服装,是为了防止静电
D.一个额定功率200瓦的家用电冰箱,一天24小时的耗电量4.8千瓦时

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

13.粒子扩束装置由粒子加速器,偏转电场和偏转磁场组成,如图,一个质量为m=2.0×10-11kg,电荷量q=1.0×10-5C的带正电微粒(重力忽略不计)从静止进入加速电场,电压U1=100V,加速后水平进入两平行金属板间的偏转电场中,金属板长L=20cm,两板间距d=10$\sqrt{3}$cm,微粒射出电场时速度偏转角θ=30°,接着进入一个方向垂直与纸面向里的匀强磁场,求:
(1)求微粒进入偏转电场时的速度v0和两板间电压U2
(2)若该匀强磁场的宽度为D=10$\sqrt{3}$cm,为使微粒不会由磁场右边射出,该匀强磁场的磁感应强度B1应满足条件?
(3)若粒子射入磁场时,偏转电压U2大小不变极性改变,要使粒子回到出发点O,求对应磁感应强度B2大小.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

10.在图所示的电路中,电源电动势为E、内电阻为r.在滑动变阻器的滑动触头P从图示位置向下滑动的过程中(  )
A.路端电压变大B.电路中的总电流变大
C.通过电阻R2的电流变小D.通过滑动变阻器R1的电流变小

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

11.如图所示.MN是足够长的光滑绝缘水平轨道.质量为m的带正电A球,以水平速度υ0射向静止在轨道上带正电的B球,至A、B相距最近时,A球的速度变为$\frac{υ_0}{4}$,已知A、B两球始终没有接触.求:
(1)B球的质量;
(2)A、B两球相距最近时,两球组成的电势能增量.

查看答案和解析>>

同步练习册答案