精英家教网 > 高中物理 > 题目详情
4.在光滑的绝缘水平面上,由两个质量均为m带电量分别为+q和-q的甲、乙两个小球,在力F的作用下匀加速直线运动,则甲、乙两球之间的距离r为(  )
A.q$\sqrt{\frac{2k}{F}}$B.$\sqrt{q\frac{k}{F}}$C.2q$\sqrt{\frac{k}{F}}$D.2q$\sqrt{\frac{F}{k}}$

分析 对整体分析,根据牛顿第二定律求出共同的加速度,隔离对乙分析,运用牛顿第二定律求出它们之间的距离.

解答 解:选甲、乙作为整体为研究对象,加速度为:a=$\frac{F}{2m}$ …①
选乙为研究对象,列牛顿第二定律方程有:$\frac{k{q}^{2}}{{r}^{2}}$=ma…②
①②联立得:r=q$\sqrt{\frac{2k}{F}}$,故A正确、BCD错误.
故选:A.

点评 解决本题的关键能够正确地受力分析,运用牛顿第二定律进行求解,注意整体法和隔离法的运用.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

3.城市中的路灯、无轨电车的供电线路等,经常用三角形的结构悬挂,如图是这类结果的简化模型.图中轻杆OB可以绕过B点且垂直于纸面的轴转动,钢索OA和杆OB的质量都可以忽略不计,如果悬挂物的重力为G,∠ABO=90°,AB>OB,在某次产品质量检测和性能测试中保持A、B两点不动,只缓慢改变钢索OA的长度,则关于钢索OA的拉力F1和杆OB上的支持力F2的变化情况,下列说法正确的是(  )
A.从图示位置开始缩短钢索OA,钢索OA的拉力F1先减小后增大
B.从图示位置开始缩短钢索OA,杆OB上的支持力F2不变
C.从图示位置开始伸长钢索OA,钢索OA的拉力F1增大
D.从图示位置开始伸长钢索OA,杆OB上的支持力F2先减小后增大

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.用如图所示装置进行以下实验:
(1)先测出滑块A、B的质量M、m及滑块与桌面的动摩擦因数μ,查出当地重力加速度g;
(2)用细线将滑块A、B连结,使A、B间的弹簧压缩,滑块B紧靠在桌边;
(3)烧断细线,测出滑块B做平抛运动落地时的水平位移为s1,滑块A沿桌面滑行的距离为s2
为验证动量守恒定律,写出还需测量的物理量及表达它的字母桌面离地面的高度h.如果动量守恒,须满足的关系式是
$M\sqrt{2μg{s}_{2}}=m{s}_{1}\sqrt{\frac{g}{2h}}$.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

12.图1是测量阻值约为几欧的未知电阻Rx的原理图,图中R0是定值电阻(5Ω),R1是电阻箱(0-99.9Ω),R是滑动变阻器.A1和A2是电流表,E是电源(电动势约4.5V,内阻很小)

在保证安全和满足要求的情况下,使测量范围尽可能大,实验具体步骤如下:
(Ⅰ)连接好电路,将滑动变阻器R调到最大 
(Ⅱ)闭合S,从零开始调节电阻箱R1为适当值,再调节滑动变阻器R,使A1示数I1=0.2A,记下这时电阻箱的阻值R1和A2的示数I2
(Ⅲ)重复步骤(Ⅱ),再测量6组R1和I2值;
(Ⅳ)将实验测得的7组数据在坐标纸上描点;
根据实验回答以下问题:
①现有下列四个可供选用的电流表:
A.电流表(0-3mA内阻为 20.0Ω) 
B.电流表(0-3mA内阻未知)
C.电流表(0-0.3A内阻未知)      
D.电流表(0-0.3A内阻为5.0Ω)
电流表A1选C,电流表A2选D       
②测得一组R1和I2值后,调整电阻箱R1使其阻值变小,要使A1示数仍为0.2A,应使滑动变阻器R接入电路的阻值变小(选填“不变”,“变大”或“变小”) 
③在坐标纸上画出R1与I2的关系图.
④根据以上实验测得出Rx=6.0Ω.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

19.1931年英国物理学家狄拉克就从理论预言存在只有一个磁极的粒子,即“磁单极子”.1982年美国物理学家卡布莱利用电感应现象设计了一个寻找“磁单极子”的实验,他设想让一个只有N极的“磁单极子”自上而下穿过电阻为零的超导线圈(如图甲),观察其中电流的方向和大小变化情况.和一个小条形磁铁自上而下穿过普通导体线圈(如图乙)相比,人上往下看(  )
A.普通导体线圈中将出现顺时针方向的持续电流
B.普通导体线圈中将出现逆时针方向的持续电流
C.超导线圈中将出现顺时针方向的持续电流
D.超导线圈中将出现逆时针方向的持续电流

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

9.如图所示,铅球A的半径为R,质量为M,另一质量为m的铅球B,两球球心的距离为d,设两铅球之间的万有引力为F.若在铅球A的内部挖去一个半径为$\frac{R}{2}$的球形空腔,空腔的球心在A的球心处,则挖去之后两物体间的万有引力为(  )
A.$\frac{1}{2}F$B.$\frac{3}{4}F$C.$\frac{7}{8}F$D.$\frac{15}{16}F$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.某同学利用如图甲所示的实验装置验证机械能守恒定律,质量为m1的物体通过细线绕过光滑的小定滑轮拴着放在水平轨道上质量为m2的小车(可视为质点),在轨道上的A点和B点分别安装有一光电门,小车上有一宽度为d的挡光片,游标卡尺测出挡光片的宽度如图乙所示,现把小车拉到水平面上的某点由静止释放,挡光片通过A的挡光时间为t1,通过B的挡光时间为t2.为了证明小车通过A、B时系统的机械能守恒,还需要进行一些实验测量和列式证明.

(1)挡光片的宽度d=5.15mm.
(2)下列实验测量步骤中必要的是ACD.
A.用天平测出小车的质量m2和物体的质量m1
B.测出小车通过A、B两光电门之间所用的时间△t
C.测出滑轮上端离水平轨道的高度h
D.测出小车在A、B位置时绳子与水平方向夹角θ1和θ2
(3)若该同学用d和t的比值来反映小车经过A、B光电门时的速度,并设想如果能满足$\frac{1}{2}$m2[${(\frac{d}{{t}_{2}})}^{2}$-${(\frac{d}{{t}_{1}})}^{2}$]+$\frac{1}{2}$m1[${(\frac{dco{sθ}_{2}}{{t}_{2}})}^{2}$-${(\frac{dco{sθ}_{1}}{{t}_{1}})}^{2}$]=m1g($\frac{h}{si{nθ}_{1}}$-$\frac{h}{si{nθ}_{2}}$)关系式,即能证明小车和物体组成的系统机械能守恒.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

13.在”验证机械能守恒定律”的实验中,已知打点计时器所用电源的频率为50Hz,当地的重力加速度g=9.80m/s2,测得所用的重物的质量为1.00kg.实验中得到一条点迹清晰的纸带如图所示,把第一个点记作0,另选连续的4个点A、B、C、D作为测量的点.经测量知道A、B、C、D各点到O点的距离分别为62.99cm、70.18cm、77.76cm、85.73cm.根据以上数据,可知重物由O点运动到C点,重力势能的减少量等于7.62 J,动能的增加量等于7.54 J(取三位有效数字).

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

14.如图所示,一质量M=0.4kg的小物块B在足够长的光滑水平台面上静止不动,其右侧固定有一轻质水平弹簧(处于原长).台面的右边平滑对接有一等高的水平传送带,传送带始终以υ=1m/s的速率逆时针转动.另一质量m=0.1kg的小物块A以速度υ0=4m/s水平滑上传送带的右端.已知物块A与传送带之间的动摩擦因数μ=0.1,传送带左右两端的距离l=3.5m,滑块A、B均视为质点,忽略空气阻力,取g=10m/s2
(1)求物块A第一次到达传送带左端时速度大小;
(2)求物块A第一次压缩弹簧过程中弹簧的最大弹性势能Epm
(3)物块A会不会第二次压缩弹簧?

查看答案和解析>>

同步练习册答案