精英家教网 > 高中物理 > 题目详情
4.波长为λ=0.17μm的紫外线照射至金属筒上能使其发射光电子.光电子在磁感应强度为B的匀强磁场中做最大半径为r的匀速圆周运动时,已知Br=5.6×10-6t•m,光电子的质量为m=9.1×10-31kg、电荷量为e=1.6×10-19C,普朗克常量为h=6.63×10-34J•s,光束为c=3.0×108m/s.求:
(1)每个光电子的动能Ek
(2)金属筒的逸出功W0

分析 (1)电子在匀强磁场中做匀速圆周运动的向心力为洛伦兹力,求得运动的速度,再结合动能表达式,即可求解;
(2)根据爱因斯坦光电效应方程同,求得金属的逸出功.

解答 解:(1)电子在匀强磁场中做匀速圆周运动的向心力为洛伦兹力,有:m$\frac{{v}^{2}}{r}$=evB
得:v=$\frac{erB}{m}$
电子的最大初动能为:Ek=$\frac{1}{2}$mv2=$\frac{{e}^{2}{r}^{2}{B}^{2}}{2m}$=$\frac{(1.6×1{0}^{-19})^{2}×(5.6×1{0}^{-6})^{2}}{2×9.1×1{0}^{-31}}$J≈4.4×10-19 J;
(2)入射光子的能量为:ε=hν=h$\frac{c}{λ}$=$\frac{6.63×1{0}^{-34}×3×1{0}^{8}}{0.17×1{0}^{-6}}$J≈1.17×10-18J
根据爱因斯坦光电效应方程得金属的逸出功为:W0=hν-Ek=1.17×10-18J-4.4×10-19 J=7.3×10-19 J
答:(1)每个光电子的动能4.4×10-19 J.
(2)金属筒的逸出功7.3×10-19 J.

点评 本题是个小型的综合题,考查了洛伦兹力充当向心力,爱因斯坦光电效应方程和物质波.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

14.发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后点火,使其沿椭圆轨道2运行,最后再次点火.将卫星送入同步圆轨道3.轨道1、2相切于Q点,轨道2、3相切于P点(如图),则当卫星分别在1,2,3 轨道上正常运行时,以下说法正确的是(  )
A.卫星沿轨道1运行的周期等于沿轨道2运行的周期
B.卫星经轨道2由Q向P运动过程中动能变小,势能增大
C.卫星在轨道1上经过Q点时的加速度大于它在轨道2上经过Q点时的加速度
D.卫星在轨道2上经过P点的速率大于它在轨道3上经过P点的速率

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

15.如图所示,质量为m、带正电的小球,在竖直向上的匀强电场中的A点由静止开始释放,以$\frac{1}{2}$g(g为重力加速度)的加速度竖直向下下降高度为h到达B点.空气阻力不计,则在此过程中,下列说法正确的是(  )
A.小球重力势能减少了$\frac{1}{2}$mghB.小球动能增加了mgh
C.小球克服电场力做功为$\frac{1}{2}$mghD.小球机械能减少了$\frac{1}{2}$mgh

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

12.如图所示,质量为m的物体放在粗糙的水平转盘上,物体到转盘轴的距离为r,物体与转盘间的动摩擦因数为μ,现让转盘的转速由0逐渐增大,直到物体恰好不滑离转盘为止.求:
(1)转盘的最大加速度;
(2)在整个过程中转盘对小物块所做的功.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

19.水能是可再生能源,可持续的用来发电为人类提供“清洁”的能源.黄河壶口瀑布是一个水力发电水库,其平均流量为9000 m3/s,落差为40m,发电效率为75%,则每天达多少kw•h?(取g=10m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

9.2014年10月24日,“嫦娥五号”在西昌卫星发射中心发射升空,并在8天后以“跳跃式再入”方式成功返回地面.“跳跃式再入”指航天器在关闭发动机后进入大气层,依靠大气升力再次冲出大气层,降低速度后在进入大气层,如图所示,虚线为大气层的边界(虚线圆的圆心为地心).已知地球半径R,地心到d点的距离为r,地球表面重力加速度为g.关于“嫦娥五号”,下列说法正确的是(  )
A.在b点处于完全失重状态B.在b点所受合外力为零
C.在d点的加速度小于$\frac{g{R}^{2}}{{r}^{2}}$D.在d点的加速度等于$\frac{g{R}^{2}}{{r}^{2}}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.如图所示,将质量m=1.0kg的小物块放在长L=3.0m的平板车左端,车的上表面粗糙,物块与车上表面间的动摩擦因数μ=0.6,光滑半圆形固定轨道与光滑水平轨道在同一竖直平面内,直径MON竖直,车的上表面和轨道最低点高度相同,开始时车和物块一起以v0=10m/s的初速度在水平轨道上向右运动,车碰到轨道后立即停止运动,取g=10m/s2,求:
(1)若半圆形轨道的直径d1=2.4m,物块回落至车上时距右端的距离;
(2)若半圆形轨道的直径d2=6.5m、平板车的质量M=1.5kg,物块再次离开小车时的速度大小.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

13.汽车车轮的直径是1.0米,匀速行驶的速率是36千米/小时,在行驶中车轮的角速度是20弧度/秒,每分钟车轮转$\frac{600}{π}$圈.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

19.如图所示,在正交坐标系Oxyz中,分布着电场和磁场(图中未画出).在Oyz平面的左方空间内存在沿y轴负方向、磁感应强度大小为B的匀强磁场;在Oyz平面右方、Oxz平面上方的空间内分布着沿z轴负方向、磁感应强度大小也为B匀强磁场;在Oyz平面右方、Oxz平面下方分布着沿y轴正方向的匀强电场.在t=0时刻,一个微粒的质量为m、电荷量为q的微粒从P点静止释放,已知P点的坐标为(5a,-2a,0),电场强度大小为$\frac{aq{B}^{2}}{4m}$,不计微粒的重力.
求:
(1)微粒第一次到达x轴的速度大小v和时刻t1
(2)微粒第一次到达y轴的坐标和时刻t2
(3)假设在平面Oyz存在一层特殊物质,使微粒每次经过Oyz平面时,速度大小总变为原来的$\frac{1}{2}$,求在时刻t3=t2+$\frac{4πm}{qB}$时,电荷所在位置的坐标.

查看答案和解析>>

同步练习册答案