精英家教网 > 高中物理 > 题目详情
5.在地面上方某处的真空室里存在着水平方向的匀强电场,以水平向右和竖直向上为x轴、y轴正方向建立如图所示的平面直角坐标系.一质量为m、带电荷量为+q的微粒从点P($\frac{\sqrt{3}}{3}$l,0)由静止释放后沿直线PQ运动.当微粒到达点Q(0,-l)的瞬间,撤去电场,同时加上一个垂直于纸面向外的匀强磁场(图中未画出),磁感应强度的大小B=$\frac{m}{q}$$\sqrt{\frac{3g}{2l}}$,该磁场有理想的下边界,其他方向范围无限大.已知重力加速度为g.求:
(1)匀强电场的场强E的大小;
(2)撤去电场加上磁场的瞬间,微粒所受合外力的大小和方向;
(3)欲使微粒不从磁场下边界穿出,该磁场下边界的y轴坐标值应满足什么条件?

分析 (1)微粒在电场中受到电场力和重力,沿PQ方向运动,可知微粒所受的合力必定沿PQ方向,可知电场力方向水平向左,作出力的合成图,求解场强大小.
(2)微粒到达Q点的速度v可分解为水平分速度为v1和竖直分速度为v2.微粒在电场中竖直方向的分运动是自由落体运动,由下落高度可求出v2,由速度的分解,求出v1.撤去电场加上磁场的瞬间,由F=qvB分别求出两个分速度所对应的洛伦兹力,再合成求解微粒的合力大小和方向.
(3)根据微粒的受力情况,运用运动的分解法研究:微粒的运动可以看作水平面内的匀速直线运动与竖直面内的匀速圆周运动的合成,能否穿出下边界取决于竖直面内的匀速圆周运动,当微粒的轨迹刚好与下边界相切时,得到临界的半径,即可求出该磁场下边界的y轴坐标值应满足的条件.

解答 解:(1)由于微粒沿PQ方向运动,可知微粒所受的合力沿PQ方向,可得:
qE=mgcotα
由题意得:α=60°
解之得:E=$\frac{\sqrt{3}mg}{3q}$
(2)微粒到达Q点的速度v可分解为水平分速度为v1和竖直分速度为v2
根据竖直方向上自由落体运动规律有:
v22=2gl
则有:v2=$\sqrt{2gl}$
v1=v2tan30°=$\sqrt{\frac{2}{3}gl}$
对于水平分速度v1,其所对应的洛伦兹力大小为f1,方向竖直向上,则有:
f1=qv1B=q•$\sqrt{\frac{2}{3}gl}$•$\frac{m}{q}\sqrt{\frac{3g}{2l}}$=mg
即与重力恰好平衡.
对于竖直分速度v2,其所对应的洛伦兹力大小为f2,方向水平向左
此力为微粒所受的合力大小为:F=f2=qv2B=q•$\sqrt{2gl}$•$\frac{m}{q}$$\sqrt{\frac{3g}{2l}}$=$\sqrt{3}$mg,方向沿水平向左.
(3)由(2)可知,微粒的运动可以看作水平面内的匀速直线运动与竖直面内的匀速圆周运动的合成.
能否穿出下边界取决于竖直面内的匀速圆周运动,则有:
qv2B=m$\frac{{v}_{2}^{2}}{r}$
解得:r=$\frac{m{v}_{2}}{qB}$=$\frac{2\sqrt{3}}{3}$l
所以欲使微粒不从其下边界穿出,磁场下边界的y坐标值应满足:y≤-(r+l)=-($\frac{2\sqrt{3}}{3}$+1)l
答:(1)匀强电场的场强E的大小是$\frac{\sqrt{3}mg}{3q}$;
(2)撤去电场加上磁场的瞬间,微粒所受合外力的大小为$\sqrt{3}$mg,方向水平向左;
(3)欲使微粒不从磁场下边界穿出,该磁场下边界的y轴坐标值应满足的条件是y≤-($\frac{2\sqrt{3}}{3}$+1)l.

点评 本题中微粒在电场中做直线运动,抓住质点做直线运动的条件:合力与速度共线分析并求解场强的大小.加上磁场后,运用分解的方法研究洛伦兹力,此法不常用,要尝试运用.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

15.如图所示的是同时,同地向同一方向做直线运动的相同质量的甲,乙两物体的v-t图象,从图中可知(  )
A.甲,乙两物体均为匀加速运动
B.甲运动得比乙快
C.在10s末甲物体追上了乙物体
D.甲物体受到的合力大于乙物体受到的合力

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

16.下列说法中正确的是 (  )
A.扩散运动就是布朗运动
B.液体表面层分子间距离大于液体内部分子间距离,故液体表面存在张力
C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体
D.气体如果失去了容器的约束就会散开,这是因为气体分子间斥力大于引力的缘故

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

13.如图所示,质量为m的A球和质量为2m的B球用挡板挡住,静止在光滑斜面上,斜面倾角为θ,A球左边的挡板竖直,B球左边挡板垂直斜面.
求:(1)斜面对A球和B球的支持力之比?
(2)挡板对A球和对B球的支持力之比.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

20.如图所示,三个半径分别为R,2R,6R的同心圆将空间分为Ⅰ,Ⅱ,Ⅲ,Ⅳ四个区域,其中圆形区域Ⅰ和环形区域Ⅲ内有垂直纸面向里的匀强磁场,磁感应强度分别为B和$\frac{B}{2}$,一个质子从区域Ⅰ边界上的A点以速度v沿半径方向射入磁场,经磁场偏转恰好从区域Ⅰ边界上的C点飞出,AO垂直CO,则关于质子的运动,下列说法正确的是(  )
A.质子最终将离开区域Ⅲ在区域Ⅳ匀速运动
B.质子最终将一直在区域Ⅲ内做匀速圆周运动
C.质子能够回到初始点A,且周而复始的运动
D.质子能够回到初始点A,且回到初始点前,在区域Ⅲ中运动的时间是在区域Ⅰ中运动时间的6倍

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

10.下列说法正确的是 (  )
A.甲、乙两个物体组成一系统,甲、乙所受合外力不均为零,则系统的动量不可能守恒
B.用不可见光照射金属一定比用可见光照射同种金属产生的光电子的初动能要大
C.波粒二象性中的波动性是大量光子和高速运动的微观粒子的行为,这种波动性与机械波在本质上是不同的
D.欲使处于基态的氢原子电离,可以用动能为13.7eV的电子去碰撞
E.原子核式结构模型是由汤姆逊在α粒子散射实验基础上提出的
F.发现中子的核反应是${\;}_{4}^{9}$Be+${\;}_{2}^{4}$He→${\;}_{6}^{12}$C+${\;}_{0}^{1}$n
G.核力是强相互作用的一种表现,任意两个核子之间都存在核力作用
H.β衰变说明了β粒子(电子)是原子核的组成部分

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

17.如图所示,轻弹簧的一端固定,另一端与滑块B相连,B静止在水平导轨上,弹簧处在原长状态.滑块A从半径为R的光滑$\frac{1}{4}$圆弧槽无初速滑下,从P点滑上水平导轨,当A滑过距离s1=R时,与B相碰,碰撞时间极短,碰后A、B紧贴在一起运动,但互不粘连.最后A恰好返回出发点P并停止.在A、B压缩弹簧过程始终未超过弹簧的弹性限度.已知滑块A和B质量相同(A、B可视为质点),且与导轨的滑动摩擦因数都为μ=0.1,重力加速度为g.试求:
(1)滑块A从圆弧滑到P点时对导轨的压力,
(2)A、B碰后瞬间滑块A的速度,
(3)运动过程中弹簧最大形变量s2

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

14.在O点有一波源,t=0时刻开始向+y方向振动,形成沿x轴正方向传播的一列简谐横波.距离O点为x1=3m的质点A的振动图象如图甲所示;距离O点为x2=4m的质点B的振动图象如图乙所示;距离O点为x3=5m的质点C的振动图象如图丙所示.由此可知(  )
A.该波的波长为6m
B.该波的周期为12s
C.该波的波速为1m/s
D.10s末A点的振动速度大于B点的振动速度

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.某同学做探究“合力的功和物体速度变化关系”的实验装置如图1,小车在橡皮筋作用下弹出,沿木板滑行.用一条橡皮筋时对小车做的功记为W,当用2条、3条…,完全相同的橡皮筋并在一起进行第2次、第3次…实验时,每次实验中橡皮筋伸长的长度都保持一致.实验中小车获得的速度由打点计时器所打的纸带测出.

(1)木板水平放置,小车在橡皮筋作用下运动,当小车速度最大时,关于橡皮筋所处的状态与小车所在的位置,下列说法正确的是A.
A.橡皮筋仍处于伸长状态              B.橡皮筋恰好恢复原长
C.小车恰好运动到两个铁钉的连线处      D.小车已超过两个铁钉的连线
(2)如图2所示是某次正确操作情况下,在50HZ作电源下打点计时器记录的一条纸为了测量小车获得的速度,应选用纸带的FI(填AF或FI)部分进行测量,速度大小为0.76m/s.

查看答案和解析>>

同步练习册答案