精英家教网 > 高中物理 > 题目详情
2.土星周围有许多大小不等的岩石颗粒,它们绕土星的运动均可视为匀速圆周运动.其中有两个岩石颗粒A、B与土星中心的距离分别为rA=8.0×104km和r B=1.2×105km,忽略所有岩石颗粒间的相互作用.
(1)求A和B的线速度之比$\frac{{v}_{A}}{{v}_{B}}$.
(2)求A和B的周期之比$\frac{{T}_{A}}{{T}_{B}}$.
(3)假设A、B在同一平面内沿同一方向做匀速圆周运动,A的周期为T0,求它们从相距最远到相距最近所需要的最短时间.

分析 (1)岩石颗粒绕土星做圆周运动的向心力来源于土星的万有引力,由牛顿第二定律和万有引力定律列式,得到线速度的表达式,即可求解线速度之比.
(2)由圆周运动的基本规律求周期之比.
(3)A、B绕土星做匀速圆周运动,当B转过的角度与A转过的角度之差等于π时,卫星相距最近.

解答 解:(1)设土星质量为M,颗粒质量为m,颗粒距土星中心距离为r,线速度为v,由牛顿第二定律和万有引力定律:
$\frac{GMm}{{r}^{2}}$=m$\frac{{v}^{2}}{r}$
解得:v=$\sqrt{\frac{GM}{r}}$
其中有两个岩石颗粒A、B与土星中心的距离分别为rA=8.0×104km和r B=1.2×105km,
解得:$\frac{{v}_{A}}{{v}_{B}}$=$\frac{\sqrt{6}}{2}$
(2)设颗粒绕土星作圆周运动的周期为T,则:T=$\frac{2πr}{v}$
rA=8.0×104km和rB=1.2×105km,$\frac{{v}_{A}}{{v}_{B}}$=$\frac{\sqrt{6}}{2}$
解得:$\frac{{T}_{A}}{{T}_{B}}$=$\frac{2\sqrt{6}}{9}$
(3)A、B绕土星做匀速圆周运动,当B转过的角度与A转过的角度之差等于π时,卫星相距最近.
$\frac{2π}{{T}_{0}}$×t-$\frac{2π}{\frac{3{\sqrt{6}T}_{0}}{4}}$×t=π
t=$\frac{3(9+2\sqrt{6}{)T}_{0}}{38}$
答:(1)A和B的线速度之比$\frac{{v}_{A}}{{v}_{B}}$=$\frac{\sqrt{6}}{2}$;
(2)A和B的周期之比$\frac{{T}_{A}}{{T}_{B}}$=$\frac{2\sqrt{6}}{9}$.
(3)它们从相距最远到相距最近所需要的最短时间是$\frac{3(9+2\sqrt{6}{)T}_{0}}{38}$.

点评 此题是卫星类型,抓住万有引力等于向心力及圆周运动的基本规律,即可进行求解.向心力的公式选取要根据题目提供的已知物理量或所求解的物理量选取应用.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:填空题

12.汽车以恒定的功率在水平平直公路上从车站开出,受到的阻力为车重的0.1倍,汽车能达到的最大速度为vm,则当车速为$\frac{{v}_{m}}{3}$时刻的加速度为0.2g.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

13.如图所示,两根平行的金属轨道ABC和DEF放置在水平面上,导轨间距为d,其左半部分光滑与水平面成60°角,右半部分粗糙与水平面成30°角,金属棒MN与轨道间的动摩擦因数为μ=$\frac{\sqrt{3}}{3}$,两侧均有垂直于轨道平面的有界磁场B,今有两根质量都是m,电阻卷尾R的金属棒PQ和MN横跨在导轨上,与导轨接触良好,棒PQ在左磁场外,MN处在右磁场中.棒PQ距磁场上边界L处由静止释放,当PQ进入磁场后运动距离L时,棒MN恰以速度v离开右侧磁场区域,该过程中PQ产生的焦耳热为Q,重力加速度为g,试求:
(1)棒MN刚开始运动时的加速度;
(2)棒MN即将离开磁场时棒PQ的加速度;
(3)若斜面足够长,棒PQ所能达到的最大速度.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

10.如图所示,两个匀强磁场横截面分别为圆形和正方形,内部磁感应强度大小均为B,方向均垂直于纸面向里,圆的直径D等于正方形的边长.两个完全相同的带电粒子同是以相同的速度v分别飞入两个磁场区域,速度方向均与磁场方向垂直,进入圆形区域的带电粒子速度方向对准了圆心,进入正方形区域的带电粒子是沿一边的中心无助于垂直于边界线进入的,则(  )
A.两个带电粒子在磁场中运动的半径一定相同
B.两个带电粒子在磁场中运动的时间一定相同
C.两个带电粒子可能同时飞离磁场
D.进入圆形区域的带电粒子可能先飞离磁场

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

17.如图是两个量程的电流表,当使用a、b两个端点时量程为1A,当使用a、c两个端点时量程为0.1A.已知表头的内阻Rg为200Ω,满偏电流Ig为2mA,则R1=0.41Ω;R2=3.67Ω.(两空均保留两位小数)

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

7.某星球“一天”的时间是T=6h,用弹簧测力计在星球的“赤道”上比在“两极”处测同一物体的重力时读数小10%,设想该星球自转的角速度加快,使赤道上的物体会自动飘起来,这时星球的“一天”是多少小时?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

14.如图甲所示的平面直角坐标系xoy中,整个区域内存在匀强磁场,磁感应强度B随时间t的变化关系如图乙所示,(垂直纸面向里为正),t=0时刻,有一个带正电的粒子(不计重力)从坐标原点0沿x轴正方向进入磁场,初速度为v0=2.0×103m/s,已知带电粒子的比荷为1.0×104C/kg,试求:
(1)t=$\frac{4π}{3}$×10-4s时刻,粒子的位置坐标;
(2)粒子从开始时刻起经过多长时间到达y轴;
(3)粒子返回原点所经历的时间.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

11.如图所示,是一条利用打点计时器打出的纸带,0、1、2、3、4、5、6是七个计数点,每相邻两个计数点之间还有四个点未画出,各计数点到0的距离如图所示.求出各计数点的瞬时速度并画出速度-时间图象.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

17.质量为m的木块静止在光滑的水平面上,从t=0开始,将一个大 小为F的水平恒力作用在该木板上,在t=t1时刻力F的功率是(  )
A.$\frac{{F}^{2}}{2m}{t}_{1}$B.$\frac{{F}^{2}}{2m}$${{t}_{1}}^{2}$C.$\frac{{F}^{2}}{m}$t1D.$\frac{{F}^{2}}{m}$${{t}_{1}}^{2}$

查看答案和解析>>

同步练习册答案