精英家教网 > 高中物理 > 题目详情
19.如图所示,静止于A处的带正电粒子,经加速电场加速度后沿图中$\frac{1}{4}$圆弧虚线通过静电分析器,从P点垂直CN竖直向上进入矩形区域的有界匀强磁场(磁场方向如图所示,其CNQD为匀强磁场的边界).静电分析器通道内有均匀辐向分布的电场,方向如图所示.已知加速电场的电压为U,圆弧虚线的半径为R,粒子质量为m,电荷量为q,QN=2d,PN=3d,粒子重力不计.
(1)求粒子在辐向电场中运动时其所在处的电场强度E的大小;
(2)若粒子恰好能打在N点,求距形区域QNCD内匀强磁场的磁感应强度B的值;
(3)要求带电粒子最终能打在QN上,求磁场感应强度大小B的取值落围及出射点离Q点的最近距离.

分析 (1)由动能定理求出离开加速电场的速度,进入辅向电场做匀速圆周运动,电场力提供向心力,从而求得辐向电场的电场强度的大小.
(2)粒子打在N点,由几何关系知道粒子在磁场中做匀速圆周运动的半径为$\frac{3}{2}d$,由洛仑兹力提供向心力从而求得矩形磁场的磁感应强度大小.
(3)要使粒子打在QN上,则画出临界状态的轨迹,由几何关系求出最大半径和最小半径,由半径公式确定磁感应强度的范围.离Q点最近的则是轨迹与DQ相切的那条轨迹,由几何关系求出最近距离.

解答 解:(1)粒子在加速电场中加速,根据动能定理有:$qU=\frac{1}{2}m{v}^{2}$.
粒子在辐向电场中做匀速圆周运动,电场力提供向心力,有:qE=$m\frac{{v}^{2}}{R}$  
解得:E=$\frac{2U}{R}$
(2)粒子在匀强电场中做匀速圆周运动,洛仑兹力提供向心力,根据牛顿第二定律可知:$qBv=m\frac{{v}^{2}}{r}$
则 $r=\frac{mv}{qB}$,粒子恰好能打在N点,则r=$\frac{3}{2}d$,可得:B=$\frac{2}{3d}\sqrt{\frac{2mU}{q}}$
(3)粒子能打在QN上,则既没有从DQ边出去也没有从PN边出去,则粒子运动的轨迹的边界如图,
由几何关系可知,粒子能打到QN上,必须满足:$\frac{3}{2}d<r≤2d$  
而由$r=\frac{1}{B}\sqrt{\frac{2mU}{q}}$  则有$\frac{1}{2d}\sqrt{\frac{2mU}{q}≤B<\frac{2}{3d}\sqrt{\frac{2mU}{q}}}$
由图可得,F点离Q点最近,FO=2d,NO=d,则FN=$\sqrt{3}d$  
所以有:QF=$(2-\sqrt{3})d$.
答:(1)粒子在辐向电场中运动时其所在处的电场强度E的大小为$\frac{2U}{R}$.
(2)若粒子恰好能打在N点,距形区域QNCD内匀强磁场的磁感应强度B的值为$\frac{2}{3d}\sqrt{\frac{2mU}{q}}$.
(3)要求带电粒子最终能打在QN上,磁场感应强度大小B的取值落围是$\frac{1}{2d}\sqrt{\frac{2mU}{q}≤B<\frac{2}{3d}\sqrt{\frac{2mU}{q}}}$,出射点离Q点的最近距离$(2-\sqrt{3})d$.

点评 本题特殊情况:①带电粒子在辐向电场中做匀速圆周运动,显然由电场力提供向心力.②再次进入匀强磁场中做匀速圆周运动,要考虑边界问题.所以确定圆心,画出粒子的轨迹是解决问题的关键.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:计算题

9.如图,质量M=0.5kg的木板静止在光滑水平面上,它的左端放有一质量m=2kg的小铁块(可视为质点),铁块与木板间动摩擦因数μ=0.2,距木板右端xo=0.5m处有一竖直墙壁,现对小铁块施加一向右的大小为10N的水平力F.若木板与墙壁碰撞时间极短,碰撞前后速度大小相等,小铁块所受水平力F不变,最大静摩擦力等于滑动摩擦力,小铁块始终没有滑离木板,重力加速度g取10m/s2.求:

(1)木板从开始运动到第一次与墙壁碰撞所经历的时间;
(2)木板第2次与墙壁碰撞时小铁块的速度大小.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

10.物体从静止开始以1m/s2 的加速度做匀加速直线运动,则此物体(  )
A.第1s末的速度是1 m/sB.第1s内的位移是1 m
C.第1s内的平均速度是1 m/sD.第2s内通过的位移是1.5 m

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

7.某兴趣小组设计了一个可同时测量物体质量和当地重力加速度的实验,其装置如图(a)所示,已知滑块的质量为M,当地重力加速度记为g0.请完成下列填空:
A.闭合气泵开关,多次调节导轨,使滑块经过两光电门的时间几乎相等,测导轨水平;
B.将待测物体固定在滑块的凹槽内,并将细线的一端栓接在滑块上,另一端跨过定滑轮挂一个质量为m1的钩码;
C.调整定滑轮使细线与气垫导轨的轨道平行;
D.打开光电门、释放滑块,记录滑块通过光电门的时间t1、t2,读出两光电门之间的距离L,用游标卡尺测出遮光条的宽度为d,示数如图(b)所示,则d=0.515cm,并由此计算出滑块的加速度a1=$\frac{{d}^{2}}{2L}(\frac{1}{{v}_{2}^{2}}-\frac{1}{{v}_{1}^{2}})$(用t1、t2、L、d表示);
E、依次添加钩码,重复上述过程多次,记录相关实验数据并计算出滑块相应的加速度;
F.以钩码质量的倒数($\frac{1}{m}$)为横轴,加速度的倒数($\frac{1}{a}$)为纵轴,建立直角坐标系,利用以上数据画出如图(c)所示的图线,若该直线斜率为k,纵截距为b,则M0=$\frac{k}{b}-M$,g0=$\frac{1}{b}$.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

14.如图甲所示,abcd是位于竖直平面内的正方形闭合金属线框,金属线框的质量为m,电阻为R,在金属线框的下方有一匀强磁场区域,MN和M′N′是匀强磁场区域的水平边界,并与线框的bc边平行,磁场方向与线框平面垂直,现金属线框由距MN的某一高度处从静止开始下落,下落过程中bc边始终保持水平,图乙是金属线框由开始下落到完全穿过匀强磁场区域过程的v-t图象,图象中坐标轴上所标出的字母和重力加速度大小g均为已知量,则(  )
A.金属线框初始位置的bc边到边界MN的高度为v1t1
B.匀强磁场区域的宽度为$\frac{({v}_{1}+{v}_{2})({t}_{3}-{t}_{2})}{2}$+v1(t2-t1
C.金属线框在进入磁场的过程中通过导线横截面的电荷量为(t2-t1)$\sqrt{mg{v}_{1}R}$
D.金属线框在离开磁场的过程中产生的焦耳热为mgv1(t2-t1)+$\frac{1}{2}$mv22-$\frac{1}{2}$mv32

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

4.关于物体的运动与所受外力的关系,下列说法正确的是(  )
A.物体的速度为零时,物体处于平衡状态
B.物体有竖直向上的加速度,则物体处于超重状态
C.物体自由下落时,物体对地球没有作用力
D.运动物体若没有受到外力的作用,速度将逐渐减小,直至停止

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

11.一弹簧振子以O点为平衡位置做简谐运动,则图中2s~3s内振子振动的方向沿-y(选填“+y”或“-y”)方向,2.5s时振子的加速度方向为+y(选填“+y”或“-y”)方向,2s~3s内振子的动能减小(选填“增大”或“减小”),该点的振动方程为y=10sin0.5πtcm.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

8.如图所示,一水平轻杆AB可绕过A点的水平光滑轴转动,B端挂一重物,并用长度可改变的细线挂于墙上的C点.若保持轻杆AB处于水平状态,则改变细线BC的长度将C点沿墙上移的过程中,轻杆B端所受的力(  )
A.逐渐减小B.逐渐增大C.大小不变D.先减小后增大

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

9.某工地一传输工件的装置可简化为如图所示的情形,AB为一段足够大的$\frac{1}{4}$圆弧固定轨道,圆弧半径R=5.6m,BC为一段足够长的水平轨道,CD为一段$\frac{1}{4}$圆弧固定轨道,圆弧半径r=1m,三段轨道均光滑.一长为L=2m、质量为M=1kg的平板小车最初停在BC轨道的最左端,小车上表面刚好与AB轨道相切,且与CD轨道最低点处于同一水平面.一可视为质点、质量为m=2kg的工件从距AB轨道最低点h高处沿轨道自由滑下,滑上小车后带动小车也向右运动,小车与CD轨道左端碰撞(碰撞时间极短)后即被粘在C处.工件只有从CD轨道最高点飞出,才能被站在台面DE上的工人接住.工件与小车的动摩擦因数为μ=0.5,取g=10m/s2,求:
(1)若h为2.8m,则工件滑到圆弧底端B点时对轨道的压力为多大?
(2)要使工件能被站在台面DE上的工人接住h的取值范围.

查看答案和解析>>

同步练习册答案