精英家教网 > 高中物理 > 题目详情
5.如图所示,在纸面内半径为R的圆形区域中充满了垂直于纸面向里、磁感应强度为B的匀强磁场.一点电荷从图中A点以速度v0垂直磁场射入,速度方向与半径方向的夹角为30°.当该电荷离开磁场时,速度方向刚好改变了180°.不计电荷的重力,下列说法正确的是(  )
A.该点电荷离开磁场时速度方向的反向延长线通过O点
B.该点电荷的比荷为$\frac{{2{v_0}}}{BR}$
C.该点电荷在磁场中的运动时间为$\frac{πR}{{2{v_0}}}$
D.该点电荷在磁场中的运动时间为$\frac{πR}{{3{v_0}}}$

分析 根据电荷在磁场中偏转180°和电荷在磁场中在洛伦兹力作用下做匀速圆周运动作出电荷在磁场中的运运轨迹,根据已知条件由几何关系和洛伦兹力提供向心力推导即可.

解答 解:如图所示,点电荷在磁场中做匀速圆周运动,根据几何关系作出点电荷运动轨迹有:
电荷在电场中刚好运动$\frac{T}{2}$,电荷做圆周运动的半径r=Rsin30°=$\frac{1}{2}$R,所以有:
A、如图,电荷离开磁场时速度方向与进入磁场时速度方向相反,其反向延长线不通过O点,故A错误;
B、根据洛伦兹力提供向心力有qv0B=$\frac{m{v}_{0}^{2}}{r}$,所以:$\frac{q}{m}=\frac{{v}_{0}}{rB}=\frac{2{v}_{0}}{RB}$,故B正确;
CD、由图知该电荷在磁场中运动的时间t=$\frac{1}{2}T=\frac{1}{2}•\frac{2πr}{{v}_{0}}=\frac{πR}{2{v}_{0}}$,故C正确,D错误;
故选:BC

点评 正确的判断带电粒子在磁场中的运动轨迹,利用几何关系求运动半径,洛伦兹力提供向心力是解决本题的关键.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

2.关于地球同步卫星的说法正确的是(  )
A.所有地球同步卫星一定在赤道上空
B.不同的地球同步卫星,离地高度不同
C.不同的地球同步卫星的向心加速度大小不一定相等
D.所有地球同步卫星受到的向心力大小不一定相等

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

3.如图,截面带有半圆形状凹槽的滑块质量为M,凹槽的半径为R;可看做质点的小球质量为m.不计各接触面的摩擦,重力加速度为g.将小球从凹槽的边缘P位置由静止释放,此后的运动中(  )
A.小球下滑到凹槽最低位置时的速率是v=$\sqrt{2gR}$
B.小球下滑到凹槽最低位置时的速率是v=$\sqrt{\frac{2gRM}{m+M}}$
C.小球能够到达凹槽右端与P点等高的位置Q
D.小球到达凹槽右侧最高位置时滑块向左的位移S=$\frac{2MR}{m+M}$

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

20.如图所示,小车质量为M,小车顶端为半径为R的四分之一光滑圆弧,质量为m的小球从圆弧顶端由静止释放,对此运动过程的分析,下列说法中正确的是(g为当地重力加速度)(  )
A.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为1.5mg
B.若地面粗糙且小车能够静止不动,则地面对小车的静摩擦力最大为2mg
C.若地面光滑,当小球滑到圆弧最低点时,小车速度为m$\sqrt{\frac{2gR}{M(M+m)}}$
D.若地面光滑,当小球滑到圆弧最低点时,小车速度为M$\sqrt{\frac{2gR}{m(M+m)}}$

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

7.智能手机电池“快速充电技术“可以使用户在短时间内完成充电,比如对一块额定电压3.7V,容量1430毫安时的电池充电,可以在半小时内将电池充到满容量的75%,结合本段文字和你所学知识,关于“快速充电技术”,你认为下列叙述中比较合理的是(  )
A.这里所提到的“毫安时”指的是一种能量单位
B.这里所提到的“满容量的75%”是指将电池电压充到3.7V的75%
C.快速充电技术提高了锂电池的原有容量
D.对额定电压3.7V的锂电池充电,其充电电压应高于3.7V

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

10.如图,一足够长的光滑平行金属轨道,其轨道平面与水平面成θ角,上端用一电阻R相连,处于方向垂直轨道平面向上的匀强磁场中,质量为m、电阻为r的金属杆ab,从高为h处由静止释放,下滑一段时间后,金属杆开始以速度v匀速运动直到轨道的底端.金属杆始终保持与导轨垂直且接触良好,轨道电阻及空气阻力均可忽略不计,重力加速度为g.则(  )
A.金属杆加速运动过程中的平均速度小于$\frac{1}{2}$v
B.金属杆加速运动过程中克服安培力做功的功率大于匀速运动过程中克服安培力做功的功率
C.当金属杆的速度为$\frac{v}{4}$时,它的加速度大小为$\frac{gsinθ}{4}$
D.整个运动过程中电阻R产生的焦耳热为$\frac{(2mgh-m{v}^{2})R}{2(R+r)}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

17.如图所示,足够长的光滑平行金属导轨CD、EF倾斜放置,其所在平面与水平面间的夹角为θ,两导轨间距为L,导轨下端分别连着电容为C的电容器和阻值为R的电阻.一根质量为m、电阻为r的金属棒放在导轨上,金属棒与导轨始终垂直且接触良好,一根不可伸长的绝缘轻绳一端拴在金属棒中间、另一端跨过定滑轮与质量为M的重物相连.金属棒与定滑轮之间的轻绳始终在两导轨所在平面内且两导轨平行,磁感应强度为B的匀强磁场垂直于导线所在平面向上,导轨电阻不计,初始状态用手托住M使轻绳恰处于伸直状态,由静止释放M.
求:(重力加速度大小为g)
(1)若S1闭合、S2断开,M的最大速度;
(2)若S1和S2均闭合,电容器的最大带电量;
(3)若S1断开、S2闭合,M的速度v随时间t变化的关系.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

14.关于静电场,下列说法正确的是(  )
A.电势等于零的物体一定不带电
B.在电势为零的地方,电荷的电势能一定为零
C.电场强度为零的地方,电势一定为零
D.负电荷沿电场线方向移动时,电势能一定减少

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

15.将一小球从20m高处以2m/s的速度水平抛出,求(g=10m/s2
(1)小球经过多长时间落地
(2)小球水平方向发生的位移.

查看答案和解析>>

同步练习册答案