精英家教网 > 高中物理 > 题目详情
13.热敏电阻包括正温度系数电阻器(PTC)和负温度系数电阻器(NTC).正温度系数电阻器(PTC)在温度升高时电阻值越大,负责温度系数电阻器(NTC)在温度升高时电阻值越小,热敏电阻的这种特性,常常应用在控制电路中.某实验小组选用下列器材探究通过热敏电阻Rx(常温下阻值约为10.0Ω)的电流随其两端电压变化的特点.
A.电流表A(量程0.6A,内阻约0.3Ω)    
B.电压表V(量程15.0V,内阻约10kΩ)
C.滑动变阻器R(最大阻值为10Ω)        
D.滑动变阻器R′(最大阻值为500Ω)
E.电源E(电动势15V,内阻忽略)    
F.电键、导线若干
①实验中改变滑动变阻器滑片的位置,使加在热敏电阻两端的电压从零开始逐渐增大,请在所提供的器材中选择必需的器材,应选择的滑动变阻器C.(只需填写器材前面的字母即可)
②请在所提供的器材中选择必需的器材,在虚线框内画出该小组设计的电路图.

③该小组测出热敏电阻R1的U-I图线如曲线I所示.请分析说明该热敏电阻是PTC热敏电阻(填PTC或NTC).
④该小组又通过查阅资料得出了热敏电阻R2的U-I图线如曲线II所示.然后又将热敏电阻R1、R2分别与某电池组连成如图所示电路.测得通过R1和R2的电流分别为0.30A和0.60A,则该电池组的电动势为10.0V,内阻为6.67Ω.(结果均保留三位有效数字)

分析 ①为方便实验操作,应选最大阻值较小的滑动变阻器.
②根据题意确定滑动变阻器与电流表的接法,然后作出实验电路.
③根据图象应用欧姆定律判断元件阻值随温度变化的关系,然后确定元件类型.
④根据实验数据,应用欧姆定律求出电源电动势与内阻.

解答 解:(1)要使加在热敏电阻两端的电压从零开始逐渐增大,则必须用分压电路,故滑动变阻器应该选用阻值较小的C;
(2)由题意要求可知,实验中采用滑动变阻器分压接法;
由于$\frac{{R}_{V}}{{R}_{x}}$=$\frac{10×1{0}^{3}}{10}$=1000;
$\frac{{R}_{x}}{{R}_{A}}$=$\frac{10}{0.3}$=33;
故采用安培表外接电路;如图所示;

③由图象可知曲线I 表示的电阻随着电压的增大阻值增大,即随着温度的增大阻值增大,所以是正温度系数电阻PTC;
④对于电阻R1,I1=0.3A,U1=8V;
对于电阻R2,I2=0.6A,U2=6V;
则根据欧姆定律:E=U1+I1r;
E=U2+I2r;
即E=8+0.3r;E=6+0.6r;
联立解得:E=10.0V;r=6.67Ω
故答案为:①C; ②如图所示;③PTC;(4)10.0,6.67.

点评 本题考查了实验器材的选择、设计实验电路、判断电阻类型、求电源电动势与内阻;确定滑动变阻器与电流表接法是正确设计实验电路的关键;当实验要求电压从零调时,变阻器应采用分压式接法,变阻器的阻值越小越方便调节;当待测电阻阻值远小于电压表内阻时电流表采用外接法.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

6.下列说法正确的是 (  )
A.气体总是充满容器,这是因为气体分子间存在斥力
B.PM 2.5是指空气中直径等于或小于2.5微米的悬浮颗粒物,它们在空气中做无规则运动,则气温越高,PM 2.5无规则运动越剧烈
C.对于一定质量的理想气体,温度升高,内能一定增大
D.在分子间距不超过分子直径10倍的情况下,随着分子间距的增大,分子间的引力和斥力都减小
E.热量不可能从低温物体传到高温物体.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

7.如图为氢原子的能级图,已知可见光的光子的能量范围为1.62~3.11eV,普朗克常量h=6.63×10-34J•s那么对氢原子在能级跃迁的过程中辐射或吸收光子的特征认识正确的是(  )
A.用能量为11.0eV的光子照射氢原子,可使处于基态的氢原子跃迁到激发态
B.处于n=2能级的氢原子能吸收任意频率的紫外线
C.处于n=3能级的氢原子可以吸收任意频率的紫外线,并且使氢原子电离
D.用波长为60nm的伦琴射线照射,不能使处于基态的氢原子电离出自由电子

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

1.如图,电源的电动势E=12V,内阻r=1.0Ω.闭合开关,定值电阻R1=6.0Ω,R2=5.0Ω,电阻箱的最大电阻9999.9Ω,以下说法错误的是(  )
A.调整电路的可变电阻R的阻值,使电压表V的示数增大△U,则通过R1的电流增加,增加量一定等于$\frac{△U}{{R}_{1}}$
B.调整电路的可变电阻R的阻值,使R2两端的电压减少量一定等于电压表V的示数增大量△U
C.通过电阻箱R的最大功率是12W
D.通过R1的最大功率为8W

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

8.一种氢气燃料的汽车,质量为m=3.0×103kg,发动机的额定输出功率为60kW,行驶在平直公路上时所受阻力恒为车重的0.1倍.若汽车从静止开始先匀加速启动,加速度的大小为a=1.0m/s2.达到额定输出功率后,汽车保持功率不变又加速行驶了675m,直到获得最大速度后才匀速行驶.试求:
(1)汽车的最大行驶速度;
(2)当速度为5m/s时,汽车牵引力的瞬时功率;
(3)汽车从静止到获得最大行驶速度所用的总时间.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

18.某同学在探究影响单摆周期的因素时,用螺旋测微器测量摆球直径的示数如图所示.该球的直径d=20.685mm.已知摆线长为L,单摆周期为T,则计算重力加速度的表达式为g=$\frac{4{π}^{2}(L+\frac{d}{2})^{2}}{{T}^{2}}$(用L、T、d表示)

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

5.如图所示,光滑水平地面静止放着质量m=10kg的木箱,与水平方向成θ=60°的恒力F作用于物体,恒力F=2.0N.当木箱在力F作用下由静止开始运动4.0s,求
(1)4.0s内力F做的功;
(2)4.0s内力F的平均功率;
(3)4.0s末拉力F的瞬时功率.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

2.以下实例利用离心运动的是(  )
A.高速转动的砂轮、飞轮等,都不得超过允许的最大转速
B.滑冰运动员在转弯时需要限制速度
C.洗衣机甩干桶甩干衣服
D.修筑铁路时,转弯处的内轨要低于外轨

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

3.一个物体的质量是2kg,沿竖直方向下落,以10m/s的速度碰到水泥地面上,随后以8m/s的速度被反弹回,若取竖直向上为正方向,则小球与地面相碰前的动量是-20 kg•m/s,相碰后的动量是16kg•m/s,小球的动量变化是36kg•m/s.

查看答案和解析>>

同步练习册答案