精英家教网 > 高中物理 > 题目详情
5.某同学提出了仅运用一个已知质量为m的钩码和一把米尺进行测量的方案.首先,他把钩码直接悬挂在这种棉线上,结果棉线没有断,而且没有发生明显伸长.然后该同学利用如图的装置,得出了该棉线能承受的最大拉力(细线两端点A、B始终位于同一水平线).请你根据该同学已具有的上述器材,回答下列问题(已知重力加速度为g):
(1)实验中需要测量的物理量是:AB之间的长度2l1和绳子的长度2l2
(2)棉线能承受的最大拉力F的表达式是:F=$\frac{mg{l}_{1}}{2\sqrt{{{l}_{1}}^{2}-{{l}_{2}}^{2}}}$.

分析 (1)根据实验的要求即可判断出需要测量的物理量;
(2)根据共点力平衡求解绳子的最大拉力.

解答 解:(1)当绳子断时,测出AB之间的长度2l1和绳子的长度2l2,根据共点力平衡求出绳子的最大拉力.
(2)绳子与竖直方向夹角的正弦值为:sin$θ=\frac{{l}_{2}}{{l}_{1}}$,
则有:cos$θ=\frac{\sqrt{{{l}_{1}}^{2}-{{l}_{2}}^{2}}}{{l}_{1}}$,
根据平衡有:2Fcosθ=mg
解得最大拉力为:F=$\frac{mg{l}_{1}}{2\sqrt{{{l}_{1}}^{2}-{{l}_{2}}^{2}}}$.
故答案为:(1)AB之间的长度2l1和绳子的长度2l2;(2)$\frac{mg{l}_{1}}{2\sqrt{{{l}_{1}}^{2}-{{l}_{2}}^{2}}}$

点评 解决本题的关键知道实验的原理,通过共点力平衡进行分析,注意几何关系在解题中的应用,难度不大,属于基础题.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

18.下列说法中正确的是(  )
A.加速度就是“增加出来的速度”B.速度为零,加速度也一定为零
C.加速度越大,速度一定越大D.加速度反映速度变化的快慢

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

19.在“描绘小灯泡的伏安特性曲线”的实验中,需测量一个标有“3V,1.5W”灯泡两端的电压和通过灯泡的电流,现有如下器材:
直流电源(电动势3.0V,内阻不计)
电流表A1(量程3A,内阻约0.1Ω)
电流表A2(量程600mA,内阻约5Ω)
电压表V1(量程3V,内阻约3kΩ)
电压表V2(量程15V,内阻约200kΩ)
滑动变阻器R1(阻值0~10Ω,额定电流1A)
滑动变阻器R2(阻值0~1kΩ,额定电流300mA)
(1)在该实验中,电流表应选择A2(填“A1”或“A2”),电压表应选择V1(填“V1”或“V2”),滑动变阻器应选择R1(填“R1”或“R2”)
(2)某同学用导线a、b、c、d、e、f、g和g连接成如图甲所示的电路,若用该电路测得灯泡的工作电压U和电流I,根据R=$\frac{U}{I}$计算此时灯泡的电阻,则灯泡电阻的测量值小于真实值(填“大于”、“等于”或“小于”).

(3)该同学连接电路后检查所有元件都完好,电流表和电压表已调零,经检查各部分接触良好,但闭合开关后,反复调节滑动变阻器,小灯泡的亮度发生变化,但电压表和电流表示数不能调零,则断路的导线为h(填导线代号)
(4)图乙是在实验中根据测出的数据,在方格纸上作出该小灯泡的伏安特性曲线,若将两个该种灯泡和一个6.0Ω的定值电阻一起串联与题中的电源组成闭合回路,请估算每个小灯泡的实际功率P=0.11W(保留两位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

16.在远距离输电时,输送的电功率为P,输电电压为U,所用导线电阻率为ρ,横截面积为S,输电导线的长度之和为L,若导线上消耗的电功率为P1,用户得到的电功率为P2,则下列关系式中正确的是(  )
A.P1=$\frac{{U}^{2}S}{pL}$B.P1=$\frac{pL{P}^{2}}{{U}^{2}S}$C.P2=P-$\frac{{U}^{2}S}{pL}$D.P2=P(1-$\frac{pL{P}^{2}}{{U}^{2}S}$)

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.如图所示为一种获得高能粒子的装置.环形区域内存在垂直纸面向外、大小可调节的匀强磁场.质量为m、电量为+q的粒子在环中做半径为R的圆周运动.A、B为两块中心开有小孔的极板,板间距为d.A、B板原来电势都为零,每当粒子飞经A板向B板运动时,A板电势升高为+U,B板电势仍保持为零,粒子在两板间电场中得到加速.每当粒子离开B板时,A板电势又降为零.粒子在电场一次次加速下动能不断增大,而绕行半径不变.粒子的重力忽略不计.
(1)设t=0时,粒子静止在A板小孔处,在电场作用下加速.求粒子第一次穿过B板时速度v1的大小;
(2)为使粒子始终保持在半径为R的圆轨道上运动,磁场必须周期性递增.求粒子绕行第n圈时磁感应强度的大小Bn
(3)求粒子绕行n圈所需的总时间tn总

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

10.如图所示,导轨间距L=0.5m,α=37°,B=0.4T,棒的质量为m=0.1kg,金属棒的电阻为R=0.2Ω,其余电阻不计,金属棒与导轨的动摩擦因数μ=0.5,导体棒由静止开始运动,到刚好匀速时,通过导体横截面的电量Q=2C.求:
(1)棒在运动过程中,任意△t=2s内导体棒在框架上可能扫过的最大面积;
(2)从开始下滑到刚好匀速,导体棒中产生的焦耳热(g=10m/s2).

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

17.如图1,一辆塑料玩具小汽车,底部安装了一个10匝的导电线圈,线圈和小车总质量m=0.5kg,线圈宽度l1=0.1m,长度与车身长度相同l2=0.25m,总电阻R=1.0Ω;某次试验中,小车在F=2.0N的水平向右恒定驱动力作用下由静止开始在水平路面上运动,当小车前端进入右边的匀强磁场区域ABCD时,恰好达到匀速直线运动状态,磁场方向竖直向下,磁感应强度B随时间t的变化情况如B-t图象(图2)所示,如图3,以小车进入磁场的时候做为计时的起点;磁场宽度d=1.0m,磁场宽度AB大于小车宽度,整个过程中小车所受阻力为其总重力的0.2倍;求:

(1)小车前端碰到磁场边界AB时线圈中的电流大小及小车的速度;
(2)从静止开始到小车前端碰到磁场边界CD的整个过程中,通过线圈中的电荷量;
(3)从静止开始到小车前端碰到磁场边界CD的整个过程中,线圈中产生的焦耳热.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

14.1932年美国物理学家劳伦斯发明了回旋加速器,巧妙地利用带电粒子在磁场中的运动特点,解决了粒子的加速问题.现在回旋加速器被广泛应用于科学研究和医学设备中.某型号的回旋加速器的工作原理如图甲所示,图乙为俯视图.回旋加速器的核心部分为两个D形盒,分别为D1、D2.D形盒装在真空容器里,整个装置放在巨大的电磁铁两极之间的强大磁场中,磁场可以认为是匀强磁场,且与D形盒底面垂直.两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计.D形盒的半径为R,磁场的磁感应强度为B.设质子从粒子源A处进入加速电场的初速度不计.质子质量为m、电荷量为+q.加速器接入一定频率的高频交变电源,加速电压为U.加速过程中不考虑相对论效应和重力作用.求:

(1)质子第一次经过狭缝被加速后进入D2盒时的速度大小v1和进入D2盒后运动的轨道半径r1
(2)质子从静止开始加速到出口处所需的时间t;
(3)若两D形盒狭缝之间距离为d,d<<R,计算说明质子在电场中运动的时间与在磁场中运动时间相比可以忽略不计的原因.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

15.金属杆在相距1m的水平轨道上与轨道垂直放置,金属杆上通以I=4A的恒定电流,如图所示,匀强磁场B=0.1T,方向垂直轨道平面,则:
①判断金属杆所受安培力的方向;
②求金属杆受安培力的大小.

查看答案和解析>>

同步练习册答案