精英家教网 > 高中物理 > 题目详情
17.如图所示,在第一象限内,0<x≤a的区域中有垂直于纸面向里的匀强磁场,已知磁感应强度的大小为B1;x>a的区域中有垂直于纸面向外的匀强磁场,在原点O处有一小孔,一束质量为m、电荷量为q带正电的粒子,沿着x轴方向以不同的速率经小孔射入磁场,且速率最大的粒子在0<x≤a区域内运动的时候转过的圆心角为60°,它最终从x轴离开磁场时速度方向与x轴负方向的夹角为30°,不计粒子重力,求:
(1)从y轴离开磁场的粒子,在y轴上的出射点到O点的最大距离;
(2)x>a区域磁感应强度的大小B2
(3)在x>a区域中所有粒子轨迹的最高点的y坐标的取值范围.

分析 (1)打到y轴上的粒子均沿半个圆周运动,离O最远的粒子轨迹刚好与两磁场交界线相切,画出轨迹即可求解;
(2)根据速度最大的粒子在0<x≤a中运动时间求出其对应的圆心角,根据几何关系求出半径,通过x>a的区域后,离开磁场时速度方向与x轴负方向的夹角为30°,画出运动的轨迹,确定圆心的位置,根据几何关系即可求得轨迹的半径,然后又半径公式即可求出;
(3)恰好进入x>a的区域的粒子向上的位移最大,画出粒子运动轨迹,根据几何关系最高点的y坐标的取值范围.

解答 解:(1)打到y轴上的粒子均沿半个圆周运动,离O最远的粒子轨迹刚好与两磁场交界线相切(如图轨迹①)
则R=a
所以:ymax=2R=2a
(2)速度最大的粒子在0<x≤a中运动的偏转角是60°,其对应的圆心角为60°,所以R′=$\frac{a}{sin60°}=\frac{2\sqrt{3}}{3}a$
通过x>a的区域后,最终从x轴离开磁场时速度方向与x轴负方向的夹角为30°,画出运动的轨迹如图(如图轨迹②)
由几何关系可知,对应的圆心角为210°,
由图中几何关系可得轨迹的半径:r•co30°+rcos60°=DE,
$DE=R′-R′cos60°=\frac{1}{2}R′=\frac{\sqrt{3}}{3}a$
所以:$r=\frac{2DE}{1+\sqrt{3}}$=$\frac{2a}{3+\sqrt{3}}$
由洛伦兹力提供向心力得:$q{v}_{m}•{B}_{1}=\frac{m{v}_{m}^{2}}{R′}$
又$q{v}_{m}•{B}_{2}=\frac{m{v}_{m}^{2}}{r}$
所以:${B}_{2}=(1+\sqrt{3}){B}_{1}$
(3)恰好穿过x=a的粒子运动的方向向上,其轨迹如图中③.
该粒子在x<a的范围内的半径为R,则:$R=\frac{mv}{q{B}_{1}}$
该粒子在x>a的范围内的半径为R″,则:$R″=\frac{mv}{q{B}_{2}}$
联立得:$R″=\frac{a}{1+\sqrt{3}}$
所以粒子到达的最高点的高度:${h}_{max}=R+R″=\frac{2+\sqrt{3}}{1+\sqrt{3}}a$
当粒子的速度最大时,粒子到达的最高点是所有粒子中最低的,其高度:hmin=R′(1-cos60°)+r(1-cos60°)=$\frac{2+\sqrt{3}}{3+\sqrt{3}}a$
所以,在x>a区域中所有粒子轨迹的最高点的y坐标的取值范围是:$\frac{2+\sqrt{3}}{3+\sqrt{3}}a≤y≤\frac{2+\sqrt{3}}{1+\sqrt{3}}a$
答:(1)y轴上粒子射出点到原点O的最大距离为2a;
(2)x>a区域磁感应强度的大小是$(1+\sqrt{3}){B}_{1}$;
(3)在x>a区域中所有粒子轨迹的最高点的y坐标的取值范围是$\frac{2+\sqrt{3}}{3+\sqrt{3}}a≤y≤\frac{2+\sqrt{3}}{1+\sqrt{3}}a$.

点评 该题考查带电粒子在磁场中的运动,带电粒子在磁场中运动的题目解题步骤为:定圆心、画轨迹、求半径,同时还利用圆弧的对称性来帮助解题.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

7.如图所示,一等腰三角形玻璃砖OAB的顶角∠AOB=2θ,其中0°<θ<90°,玻璃砖的折射率为n=2.要使一束从AB面垂直射入的光在OA和OB两个面都发生全反射,仅考虑光束第一次经OA面反射和第一次经OB面反射的情况,求θ的取值范围.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

8.通过一阻值R=1Ω的电阻的交变电流如图所示,其周期为1s,电阻两端电压的有效值约为(  )
A.1.5VB.1.7VC.1VD.1.4V

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

5.物理小组在一次探究活动中测量滑块与木板之间的动摩擦因数.实验装置如图1,一表面粗糙的木板固定在水平桌面上,一端装有定滑轮;木板上有一滑块,其一端与电磁打点计时器的纸带相连,另一端通过跨过定滑轮的细线与托盘连接.打点计时器使用的交流电源的频率为50Hz.开始实验时,在托盘中放入适量砝码,滑块开始做匀加速运动,在纸带上打出一系列小点.

①图2是给出的是实验中获取的一条纸带的一部分:0、1、2、3、4、5、6、7是计数点,每相邻两计数点间还有4个打点(图中未标出),计数点间的距离如图2所示.根据图中数据计算的加速度a=0.496m/s2 (保留三位有效数字).
②为测量动摩擦因数,下列物理量中还应测量的有CD.(填入所选物理量前的字母)
A.木板的长度l                   B.木板的质量m1
C.滑块的质量m2                   D.托盘和砝码的总质量m3
E.滑块运动的时间t
③滑块与木板间的动摩擦因数μ=$\frac{{m}_{3}g-{(m}_{2}+{m}_{3})a}{{m}_{2}g}$(用被测物理量的字母表示,重力加速度为g).与真实值相比,测量的动摩擦因数偏大(填“偏大”或“偏小”).

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

12.一列简谐横波沿x轴传播,t=0时的波形如图示,质点A与质点B相距1m,A点速度沿y轴正方向;t=0.02s时,质点A第二次到达正向最大位移处,由此可知(  )
A.此波沿x轴负方向传播
B.此波的传播速度为125m/s
C.从t=0时起,经过0.04 s,质点A沿波传播方向迁移了5m
D.在t=0.04 s时,质点B处在平衡位置,速度沿y轴负方向
E.能与该波发生干涉的横波的频率一定为62.5Hz

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

2.如图图甲所示,平面直角坐标系中,O为坐标原点,其余三点坐标为:A(0,l)、B(l,l)、C(l,0),在OABC区域(包括坐标轴)存在变化的磁场,磁感应强度变化规律如图乙所示,规定磁场方形垂直平面向里为正,有一个带电荷量为-q(q>0)、质量为m的粒子(不计重力),从坐标原点处以速度v(大小未知)沿y轴正方向射入磁场,已知图乙中B0>$\frac{3mv}{ql}$.
(1)若粒子从x轴射出,求磁场变化周期T0的取值范围;
(2)若粒子从B点沿y轴正方形射出磁场,求:
①磁场变化的周期T0
②粒子射入磁场的速度v的取值.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

9.页岩气是从页岩层中开采出来的天然气,主要成分为甲烷,被公认是洁净的能源.
(1)一定质量的页岩气(可看作理想气体)状态发生了一次循环变化,其压强 p随热力学温度T变化的关系如图所示,O、a、b在同一直线上,bc与横轴平行.则C.
A.a到b过程,气体的体积减小
B.a到b过程,气体的体积增大
C.b到c过程,气体从外界吸收热量
D.b到c过程,气体向外界放出热量
(2)将页岩气经压缩、冷却,在-160℃下液化成液化天然气(简称LNG).在液化天然气的表面层,其分子间的引力大于(选填“大于”、“等于”或“小于”)斥力.在LNG罐内顶部存在一些页岩气,页岩气中甲烷分子的平均动能等于(选填“大于”、“等于”或“小于”)液化天然气中甲烷分子的平均动能.
(3)某状况下页岩气体积约为同质量液化天然气体积的600倍,已知液化天然气的密度ρ=4.5×102kg/m3,甲烷的摩尔质量M=1.6×10-2kg/mol,阿伏伽德罗常数NA=6.0×1023/mol,试估算该状态下6.0m3的页岩气中甲烷分子数.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

6.假设火星和地球都是球体,火星的质量M1与地球的质量M2之比M1:M2=p,火星的半径R1与地球半径R2之比R1:R2=q,那么火星表面的引力加速度g1与地球表面的重力加速度g2之比g1:g2=$\frac{p}{{q}^{2}}$.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

7.下列说法中正确的是(  )
A.α粒子散射实验是估算原子核半径最简单的方法之一
B.光子像其他粒子一样,不但具有能量,也具有质量
C.玻尔理论认为原子的能量是连续的,电子的轨道半径是不连续的
D.光照到某金属上不能发生光电效应,是因为该光波长太短

查看答案和解析>>

同步练习册答案