精英家教网 > 高中物理 > 题目详情
(2007?厦门模拟)如图所求,为一离子选择器,极板A、B间距为d,用来研究粒子的种类及偏向角,在A、B间加电压,B板电势高于A板电势,且A、B极板间的垂直纸面向外的匀强磁场,磁感应强度为B1、P为一刚性内壁光滑绝缘的两端开口的直细管,右端开口在一半径为R的圆形磁场区域中心O点(即坐标原点),此磁场方向为垂直纸面向里的匀强磁场,磁感应强度为B2(细管中不存在磁场).细管的中心轴所在的直线通过S粒子源,粒子源可发出电荷量为q、质量为m速度大小、方向都不同的粒子,当有粒子人圆形区域磁场射出时,其速度方向与x轴的夹角为偏向角.不计粒子重力.
(1)若已知A、B间电压值为U,求从磁场B1射出粒子的速度v的大小;
(2)若粒子能从圆形区域磁场B2射出时,其偏向角为θ,求A、B间的电压值U;
(3)粒子能从圆形区域磁场B2射出时,A、B间的电压值应满足什么条件?
分析:(1)根据电场力等于洛伦兹力,结合各自表达式,即可求解;
(2)根据离子在磁场中做匀速圆周运动,由洛伦兹力提供向心力,结合牛顿第二定律,并运用几何关系,即可求解;
(3)根据能射出磁场B2,即有r>
R
2
,从而可求出AB电压值满足条件.
解答:解:(1)射出磁场的速度即为射出选择器的速度,能射入P的管的粒子,速度满足:
则有:qE=qvB1
解得,v=
E
B1
=
U
B1d
 
(2)离子在B2中做圆周运动,则:
qvB2=m
v2
r
 ②
如图,由几何关系得

R
2
=rsin
θ
2
 ③
联立①②③得:
U=
qRdB1B2
2msin
θ
2
   
(3)能射出B2,则:r>
R
2

联立①②⑤得:
U>
qRdB1B2
2m
  
答:(1)从磁场B1射出粒子的速度v的大小
U
B1d

(2)A、B间的电压值U=
qRdB1B2
2msin
θ
2

(3)粒子能从圆形区域磁场B2射出时,A、B间的电压值应满足U>
qRdB1B2
2m
条件.
点评:考查粒子在电场力与洛伦兹力相平衡时的运动,掌握平衡状态方程;
考查了粒子在洛伦兹力作用下作匀速圆周运动,掌握牛顿第二定律与几何关系的综合应用,注意学会由已知长度求运动半径的方法.
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

(2007?厦门模拟)天文工作者观测到某行星的半径为R1,自转周期为T1,它有一颗卫星,轨道半径为R2,绕行星公转周期为T2.若万有引力常量为G,求:
(1)该行星的平均密度;
(2)要在此行星的赤道上发射一颗质量为m的近地人造卫星,使其轨道平面与行星的赤道平面重合,且设行星上无气体阻力,则对卫星至少应做多少功?

查看答案和解析>>

科目:高中物理 来源: 题型:

(2007?厦门模拟)如图,用绝热活塞把绝热容器隔成容积相同的两部分,先把活塞锁住,将质量和温度都相同的氢气和氧气分别充入容器的两部分,然后提起销子S,使活塞可以无摩擦地滑动,当活塞平衡时:(  )

查看答案和解析>>

科目:高中物理 来源: 题型:

(2007?厦门模拟)关于热现象和热学规律,下列说法中哪些符合事实(  )

查看答案和解析>>

科目:高中物理 来源: 题型:

(2007?厦门模拟)如图所示,小王要在客厅里挂上一幅质量为1.0kg的画(含画框),画框背面有两个相距1.0m、位置固定的挂钩,他将轻质细绳两端分别固定在两上挂钩上,把画对称地挂在竖直墙壁的钉子上,挂好后整条细绳呈绷紧状态,设细绳能够承受的最大位力为10N,g取10m/s2,则细绳的长度为下面哪些值时才不会断掉(  )

查看答案和解析>>

科目:高中物理 来源: 题型:

(2007?厦门模拟)如图所示,两极板水平放置的平行板电容器间形成匀强电场,两极板相距为d.一带正电的微粒从上极板M的左边缘以初速度v0射入,沿直线从下极板的右边缘射出.已知微粒的电量为q,质量为m,下列说法正确的是(  )

查看答案和解析>>

同步练习册答案