6£®Èçͼ£¬°ë¾¶ÎªRµÄ$\frac{1}{4}$Ô²»¡Ö§¼Ü¹Ì¶¨ÔÚ×ÀÃæÉÏ£¬¾àÀëÔ²»¡±ßÔµC´¦¸ß¶ÈΪ$\frac{R}{3}$µÄD´¦¹Ì¶¨Ò»Ð¡¶¨»¬ÂÖ£¬Ò»Èƹý¶¨»¬ÂÖµÄÇáÉþÁ½¶Ëϵ×ÅÖÊÁ¿·Ö±ðΪ2mÓëmµÄСÇòaºÍb£¨¾ù¿ÉÊÓΪÖʵ㣩£¬¿ªÊ¼Ê±£¬ÈÃaλÓÚC´¦£®²»¼ÆÒ»ÇÐĦ²Á£¬Éþ×Ó×ã¹»³¤£¬»Ø´ð£º
£¨1£©Èç¹û¼ô¶ÏDC¼äµÄÉþ×Ó£¬ÈÃСÇòaÔÚC´¦´Ó¾²Ö¹¿ªÊ¼ÑØÖ§¼Ü×ÔÓÉ»¬ÏÂ
¢Ù²âµÃСÇòÂäµØE´¦Óë×À×ÓµÄˮƽ¾àÀëEBµÈÓÚ2R£¬ÊÔÇó×À×ÓABµÄ¸ß¶Èh£»
¢ÚÉèСÇòa´ÓC»¬µ½A´¦µÄʱ¼ät1£¬´ÓAÔ˶¯µ½EµÄʱ¼äΪt2£¬ÊԱȽÏt1¡¢t2µÄ´óС£¬²¢ËµÃ÷ÀíÓÉ£»
£¨2£©Èç¹û²»¼ô¶ÏÉþ×Ó£¬ÈÃСÇòaÔÚC´¦´Ó¾²Ö¹¿ªÊ¼ÑØÖ§¼Ü»¬Ï£¬Çó´ÓCµ½A¹ý³ÌÖÐÉþ×ÓÀ­Á¦¶ÔaÇòËù×öµÄ¹¦

·ÖÎö £¨1£©¢ÙСÇòÔÚCAÖ®¼äÔ˶¯µÄ¹ý³ÌÖÐÖ»ÓÐÖØÁ¦×ö¹¦£¬ÓÉ»úеÄÜÊغ㶨Âɼ´¿ÉÇó³öСÇòµ½´ïAʱµÄËٶȣ¬È»ºó½áºÏƽÅ×Ô˶¯µÄÌص㼴¿ÉÇó³ö×ÀÃæµÄ¸ß¶È£»
¢ÚСÇòÔÚCAÖ®¼äµÄÔ˶¯ÀàËÆÓÚµ¥°Ú£¬¿ÉÒÔÓɵ¥°ÚµÄÖÜÆÚ¹«Ê½Çó³öʱ¼ä£»Ð¡Çò×öƽÅ×Ô˶¯µÄʱ¼äÓë¸ß¶ÈhÓйأ¬Çó³öºó±È½Ï¼´¿É£®
£¨2£©Èç¹û²»¼ô¶ÏÉþ×Ó£¬ÈÃСÇòaÔÚC´¦´Ó¾²Ö¹¿ªÊ¼ÑØÖ§¼Ü»¬Ï£¬ÔòÔ˶¯µÄ¹ý³ÌÖÐaÓëb×é³ÉµÄϵͳÂú×ã»úеÄÜÊغ㣬½«Ð¡ÇòaÔÚAµãµÄËٶȷֽ⣬Çó³öaÓëBµÄËٶȹØϵ£¬È»ºó½áºÏ¶¯Äܶ¨Àí¼´¿ÉÇó³ö½á¹û£®

½â´ð ½â£º£¨1£©¢Ù¼ô¶ÏDC¼äµÄÉþ×ÓÇòaÔÚCµ½AµÄ¹ý³ÌÖлúеÄÜÊغ㣬Ôò£º$\frac{1}{2}•2m{v}_{1}^{2}=2m•gR$
µÃ£º${v}_{1}=\sqrt{2gR}$
СÇòÀ뿪×ÀÃæºó×öƽÅ×Ô˶¯Ë®Æ½·½Ïò£º2R=v1•t2
ËùÒÔ£º${t}_{2}=\frac{2R}{{v}_{1}}=\frac{2R}{\sqrt{2gR}}=\sqrt{\frac{2R}{g}}$
Ôò×ÀÃæµÄ¸ß¶È£ºh=$\frac{1}{2}g{t}_{2}^{2}=\frac{1}{2}g¡Á\frac{2R}{g}=R$
¢ÚСÇòÔÚCAÖ®¼äµÄÔ˶¯ÀàËÆÓÚµ¥°ÚÔ˶¯£¬´ÓCµ½µÄʱ¼äÊÇ$\frac{1}{4}T$£¬ËùÒÔ£º
${t}_{1}=\frac{1}{4}•2¦Ð\sqrt{\frac{R}{g}}=\frac{¦Ð}{2}•\sqrt{\frac{R}{g}}£¾{t}_{2}=\sqrt{\frac{2R}{g}}$
£¨2£©Èç¹û²»¼ô¶ÏÉþ×Ó£¬ÈÃСÇòaÔÚC´¦´Ó¾²Ö¹¿ªÊ¼ÑØÖ§¼Ü»¬ÏµĹý³ÌÖÐbÏòÉÏÔ˶¯£¬ÓÉÓÚ²»¼ÆÒ»ÇÐĦ²Á£¬ÔòaÓëb×é³ÉµÄϵͳµÄ»úеÄÜÊغ㣮
½«Ð¡ÇòaÔÚAµãµÄËÙ¶ÈÑØÉþ×ӵķ½ÏòºÍ´¹Ö±ÓÚÉþ×ӵķ½Ïò·Ö½â£¬Èçͼ£¬ÔòÑØÉþ×Ó·½ÏòµÄ·ÖËÙ¶ÈÓëСÇòbµÄËٶȵĴóСÊÇÏàµÈµÄ£¬Ôò£º

ÓÉͼÖм¸ºÎ¹Øϵ¿ÉÖª£º$tan¦È=\frac{R+\frac{R}{3}}{R}=\frac{4}{3}$£¬$\frac{R}{\overline{AD}}=cos¦È$
ËùÒÔ£º¦È=53¡ã£¬$\overline{AD}=\frac{5R}{3}$
ÓÉͼÖм¸ºÎ¹Øϵ£ºvacos¦È=vb
ËùÒÔ£ºvb=0.6va
ÓÖСÇòaÔÚC´¦´Ó¾²Ö¹ÑØÖ§¼Ü»¬ÏµĹý³ÌÖÐaÓëb×é³ÉµÄϵͳÂú×ã»úеÄÜÊغãµÃ£º
2m•gR-mg£¨$\overline{AD}-\frac{R}{3}$£©=$\frac{1}{2}•2m{v}_{a}^{2}+\frac{1}{2}m{v}_{b}^{2}$
ÁªÁ¢ÒÔÉÏ·½³ÌµÃ£º${v}_{a}=0.75\sqrt{gR}$
СÇòaÔÚCµ½AµÄ¹ý³ÌÖÐÊܵ½ÖØÁ¦¡¢Ö§³ÖÁ¦ºÍÉþ×ÓµÄÀ­Á¦£¬Ö§³ÖÁ¦²»×ö¹¦£¬Óɶ¯Äܶ¨ÀíµÃ£º
$2mgR+{W}_{Éþ×Ó}=\frac{1}{2}•2m{v}_{a}^{2}-0$
ËùÒÔ£º${W}_{Éþ×Ó}=-\frac{25}{16}mgR$
´ð£º£¨1£©¢Ù²âµÃСÇòÂäµØE´¦Óë×À×ÓµÄˮƽ¾àÀëEBµÈÓÚ2R£¬×À×ÓABµÄ¸ß¶ÈÊÇR£»
¢ÚÉèСÇòa´ÓC»¬µ½A´¦µÄʱ¼ät1£¬´ÓAÔ˶¯µ½EµÄʱ¼äΪt2£¬Ôòt1£¾t2£»
£¨2£©Èç¹û²»¼ô¶ÏÉþ×Ó£¬ÈÃСÇòaÔÚC´¦´Ó¾²Ö¹¿ªÊ¼ÑØÖ§¼Ü»¬Ï£¬´ÓCµ½A¹ý³ÌÖÐÉþ×ÓÀ­Á¦¶ÔaÇòËù×öµÄ¹¦ÊÇ$-\frac{25}{16}mgR$£®

µãÆÀ ¸ÃÌâÖеÄÁ½ÎÊʵ¼Ê¶ÔÓ¦µÄÊÇÁ½ÖÖ²»Í¬µÄÇé¿ö£¬µÚÒ»ÖÖµÄÇé¿ö±È½Ï¼òµ¥£¬¶øµÚ¶þÖÖµÄÇé¿öÏ£¬Ð¡ÇòaÓëСÇòbµÄËٶȴóСÊDz»ÏàµÈµÄ£¬ÐèÒª½«aµÄËٶȷֽâºó²ÅÄÜʹÓö¯Äܶ¨Àí»ò»úеÄÜÊغ㶨ÂÉ£¬ÕâÊÇÌâÄ¿µÄÄѵ㣬ҲÊǷdz£ÈÝÒ׳ö´íµÄµØ·½£¬ÒªÌرð×¢Ò⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º2016-2017ѧÄ꼪ÁÖ³¤´ºÍâ¹úÓïѧУ¸ß¶þÉÏÆÚÖп¼ÎïÀíÊÔ¾í£¨½âÎö°æ£© ÌâÐÍ£ºÑ¡ÔñÌâ

ÈçͼËùʾ£¬µãµçºÉAºÍB£¬·Ö±ð´øÕýµçºÍ¸ºµç£¬µçÁ¿·Ö±ðΪ4QºÍQ£¬ÔÚABÁ¬ÏßÉÏ£¬µç³¡Ç¿¶ÈΪÁãµÄµØ·½ÔÚ£¨ £©

A. AºÍBÖ®¼ä

B. AÓÒ²à

C. B×ó²à

D. AµÄÓҲ༰BµÄ×ó²à

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÎªÁËʹµç¯ÏûºÄµÄµç¹¦ÂʼõСµ½Ô­À´µÄÒ»°ë£¬Ó¦¸Ã²ÉÓõĴëÊ©ÊÇ£¨¡¡¡¡£©
A£®Ê¹µçÁ÷¼õ°ëB£®Ê¹µçѹ¼õ°ë
C£®Ê¹µç¯µÄµç×è¼õ°ëD£®Ê¹µçѹºÍµç¯µÄµç×è¸÷¼õÒ»°ë

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®¹ØÓÚÎÒ¹ú·¢ÉäµÄͬ²½ÎÀÐÇ£¬ÏÂÁÐ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ËüÔËÐеÄÖÜÆڱȵØÇò×ÔתµÄÖÜÆÚ´ó
B£®ËüÔËÐеĽÇËٶȱȵØÇò×ÔתµÄ½ÇËٶȴó
C£®Ëü¶¨µãÔÚ±±¾©ÕýÉÏ·½£¬ËùÒÔÎÒ¹ú¿ÉÒÔÀûÓÃËü½øÐеçÊÓת²¥
D£®ËüÔËÐеĹìµÀƽÃæÒ»¶¨Óë³àµÀƽÃæÖغÏ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Ä³Í¬Ñ§ÔÚ¡°ÑéÖ¤»úеÄÜÊغ㶨ÂÉ¡±ÊµÑéÖеõ½ÁËÈçͼËùʾµÄÒ»ÌõÖ½´ø£¬Í¼ÖÐOµãΪ´òµã¼ÆʱÆ÷´òϵĵÚÒ»µã£¬¿ÉÒÔ¿´×öÖØÎïÔ˶¯µÄÆðµã£¬´ÓºóÃæijµãÆðÈ¡Á¬Ðø´òϵÄÈý¸öµãA¡¢B¡¢C£®¼ºÖªÏàÁÚÁ½µã¼äµÄʱ¼ä¼ä¸ôΪ0.02s£¬¼ÙÉèÖØÎïµÄÖÊÁ¿Îª1.00kg£¬Ôò´ÓÆðµãOµ½´òÏÂBµãµÄ¹ý³ÌÖУ¬ÖØÎﶯÄܵÄÔö¼ÓÁ¿¡÷Ek=1.84J£¬ÖØÁ¦ÊÆÄܵļõСÁ¿¡÷Ep=1.88J£®£¨±£ÁôÈýλÓÐЧÊý×Ö£¬ÖØÁ¦¼ÓËÙ¶ÈgÈ¡9.80m/s2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÔÚÔ²¹ìµÀÉÏÖÊÁ¿ÎªmµÄÈËÔìµØÇòÎÀÐÇ£¬Ëüµ½µØÃæµÄ¾àÀëµÈÓÚµØÇò°ë¾¶R£¬µØÃæÉϵÄÖØÁ¦¼ÓËÙ¶ÈΪg£¬Ôò£¨¡¡¡¡£©
A£®ÎÀÐÇÔ˶¯µÄËÙ¶ÈΪ$\sqrt{2Rg}$B£®ÎÀÐÇÔ˶¯µÄÖÜÆÚΪ4¦Ð$\sqrt{\frac{2R}{g}}$
C£®ÎÀÐÇÔ˶¯µÄ¼ÓËÙ¶ÈΪ$\frac{1}{2}$gD£®ÎÀÐǵĽÇËÙ¶ÈΪ$\frac{1}{4}$mRg

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖª${\;}_{92}^{235}$UÓÐÒ»ÖÖͬλËØ£¬±È${\;}_{92}^{235}$UºË¶à3¸öÖÐ×Ó£®Ä³Ê±¿Ì£¬ÓÐÒ»¸öÕâÑùµÄͬλËغËÓɾ²Ö¹×´Ì¬·¢Éú¦ÁË¥±ä£¬·Å³öµÄ¦ÁÁ£×ÓµÄËٶȴóСΪv0£¬ÊÔд³öË¥±äµÄºË·´Ó¦·½³Ì£¨²úÉúµÄк˵ÄÔªËØ·ûºÅ¿ÉÓÃY±íʾ£©£¬²¢Çó³öË¥±äºóµÄ²ÐºË³õËٶȶà´ó£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®²âÊÔÍÁÐÇÖÜΧÓÐÐí¶à´óС²»µÈµÄÑÒʯ¿ÅÁ££¬ÆäÈÆÍÁÐǵÄÔ˶¯¿ÉÊÓΪԲÖÜÔ˶¯£®ÆäÖÐÓÐÁ½¸öÑÒʯ¿ÅÁ£AºÍBÓëÍÁÐÇÖÐÐľàÀë·Ö±ðΪRA=1.2¡Á105KmºÍRB=0.75¡Á104Km£®ºöÂÔËùÓÐÑÒʯ¿ÅÁ£¼äµÄÏ໥×÷Óã®
£¨1£©ÇóÑÒʯ¿ÅÁ£AºÍBµÄÖÜÆÚÖ®±È£®
£¨2£©ÍÁÐÇ̽²âÆ÷ÉÏÓÐÒ»ÎïÌ壬ÔÚµØÇòÉÏÖØΪ10N£¬ÍÆËã³öËüÔÚ¾àÍÁÐÇÖÐÐÄ3.2¡Á103Km´¦Êܵ½ÍÁÐǵÄÒýÁ¦Îª0.4N£®ÒÑÖªµØÇò°ë¾¶Îª6.4¡Á103Km£¬Çë¹ÀËãÍÁÐÇÖÊÁ¿ÊǵØÇòÖÊÁ¿µÄ¶àÉÙ±¶£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

13£®ÖÊÁ¿Îªm=2kgµÄÎïÌåÑØˮƽÃæÏòÓÒ×öÖ±ÏßÔ˶¯£¬t=0ʱ¿ÌÊܵ½Ò»¸öˮƽÏò×óµÄºãÁ¦F£¬Èçͼ¼×Ëùʾ£¬´ËºóÎïÌåµÄv-tͼÏóÈçͼÒÒËùʾ£¬È¡Ë®Æ½ÏòÓÒΪÕý·½Ïò£¬g=10m/s2£¬Ôò£¨¡¡¡¡£©
A£®ÎïÌåÓëˮƽÃæ¼äµÄ¶¯Ä¦²ÁÒòÊýΪ¦Ì=0.5
B£®10sÄ©ºãÁ¦FµÄ˲ʱ¹¦ÂÊΪ6W
C£®10sÄ©ÎïÌåÔÚ¼ÆʱÆðµã×ó²à2m´¦
D£®10sÄÚÎïÌå¿Ë·þĦ²ÁÁ¦×ö¹¦34J

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸