精英家教网 > 高中物理 > 题目详情
11.“嫦娥一号”卫星开始绕地球做椭圆轨道运动,经过变轨、制动后,成为一颗绕月球做圆轨道运动的卫星.设卫星绕月球做圆周运动的轨道半径为r,做匀速圆周运动的周期为T.已知月球半径为R,引力常量为G.(球的体积公式V=$\frac{4}{3}$πR3,其中R为球的半径)求:
(1)月球的质量M;
(2)月球表面的重力加速度g;
(3)月球的密度ρ.

分析 (1)根据万有引力提供圆周运动向心力求中心天体月球的质量M;
(2)在月球表面重力与万有引力相等求月球表面的重力加速度;
(3)根据密度公式求解.

解答 解:(1)对卫星,由万有引力提供向心力
$\frac{GMm}{{r}^{2}}$=m$\frac{{4π}^{2}r}{{T}^{2}}$
得:M=$\frac{{{4π}^{2}r}^{3}}{{GT}^{2}}$
(2)假设月球表面附件有一物体m′,其所受万有引力等于重力
$\frac{GMm′}{{R}^{2}}$=m′g
g=$\frac{{{4π}^{2}r}^{3}}{{{T}^{2}R}^{2}}$
(3)球的体积公式V=$\frac{4}{3}$πR3,根据密度的定义,
ρ=$\frac{M}{\frac{4{πR}^{3}}{3}}$=$\frac{3{πr}^{3}}{{{GT}^{2}R}^{3}}$
答:(1)月球的质量是$\frac{{{4π}^{2}r}^{3}}{{GT}^{2}}$;
(2)月球表面的重力加速度是$\frac{{{4π}^{2}r}^{3}}{{{T}^{2}R}^{2}}$;
(3)月球的密度是$\frac{3{πr}^{3}}{{{GT}^{2}R}^{3}}$.

点评 本题要掌握万有引力提供向心力和星球表面的物体受到的重力等于万有引力,要求能够根据题意选择恰当的向心力的表达式.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

1.如图甲所示,两根质量均为0.1kg完全相同的导体棒a、b,用绝缘轻杆相连置于由金属导轨PQ、MN架设的斜面上.已知斜面倾角θ为53°,a、b导体棒的间距是PQ、MN导轨的间距的一半,导轨间分界线OO′以下有方向垂直斜面向上的匀强磁场.当a、b导体棒沿导轨下滑时,其下滑速度v与时间的关系图象如图乙所示.若a、b导体棒接入电路的电阻均为1Ω,其他电阻不计,取g=10m/s2,sin 53°=0.8,cos 53°=0.6,

试求:(1)PQ、MN导轨的间距d;
(2)a、b导体棒与导轨间的动摩擦因数;
(3)匀强磁场的磁感应强度B的大小.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

2.钟表的时针、分钟和秒针的针尖都在做圆周运动,它们的角速度的比是720:60:1,如果三针的长度的比是2:3:3.那么,三针尖的线速度的比是1:18:1080,向心加速度的比是1:216:777600.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

19.如图所示,Q点固定一带正电的点电荷,一个电子在库仑力作用下做以Q为焦点的椭圆运动.M、P、N为椭圆上的三点,P点是轨道上离Q最近的点.电子在从M经P到达N点的过程中,下列说法中不正确的是(  )
A.速率先增大后减小
B.加速度先减小后增大
C.电势能先减小后增大
D.在Q所产生的电场中,P点的电势高于 M点

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

6.如图所示,在xoy面内,第一象限中有匀强电场,场强大小为E,方向 沿y轴正方向.在X轴的下方有匀强磁场,磁感应强度大小为B,方向垂直纸面向里.今有一个质量为m 电荷量为q的带负电的粒子(不计粒子的重力和其他 阻力),从y轴上的P点以初速度V0垂直于电场方向 进人电场.经电场偏转后,沿着与X正方向成30°进入 磁场.试完成:
(1)求P点离坐标原点O的距离h;
(2)求粒子从P点出发到粒子第一次离开磁场时所用的时间?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.用螺旋测微器(千分尺)测小球直径时,示数如图所示,这时读出的数值是8.475mm.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.用半圆形玻璃砖做“测定玻璃的折射率”的实验,实验步骤如下:
a、如图,在一张白纸上画一直线ab作为玻璃砖的一个界面,标出点O;
b、过O点画一线段OA,在OA上垂直地插两枚大头针P1、P2
c、在ab线上侧放上玻璃砖,使O点正好处于圆心的位置;
d、在ab线下侧通过玻璃砖观察P1、P2的像;并插一枚大头针P3,使P3挡住P1、P2的像;标出P3的位置;
e、移去玻璃砖和大头针,连接OP3,作过O点与ab垂直的直线MN;
f、用量角器量出∠MOA和∠NOB两角的大小,根据光路可逆性,当光线从空气射向玻璃砖时,∠NOB为入射角,记为i,∠MOA为折射角,记为r;
根据以上步骤可求得玻璃折射率n=$\frac{sini}{sinγ}$若在进行步骤d时,无论怎么调整观察位置,都不能从ab线下侧观察到P1、P2的像,发生这种情况的原因是角γ过大,在ab界面发生了全反射.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

20.为了探究半导体热敏电阻的阻值RT与热力学温度T的关系,某同学设计了如图1所示的电路.图中RT是热敏电阻,R1是电阻箱,R2、R3是已知的不相等定值电阻,R是滑动变阻器,V是零刻度在中央的电压表,S是开关,E是电池.

(1)在图2中将实物图按电路原理图连线;
(2)闭合开关S,调节电阻箱R1,使电压表的示数为零,记下此时R1的阻值和热敏电阻的温度T.则在温度T时,热敏电阻的阻值RT=$\frac{{R}_{1}{R}_{2}}{{R}_{3}}$.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

1.一列简谐横波沿x轴正向传播,O、A、B、C、D为传播方向上的五个质点,相邻质点之间相隔1.0m,如图所示.t=0时刻波源O点开始向y轴正方向运动.经过0.10s它第一次达到正向最大位移,而此时刻B质点开始从平衡位置向y轴正方向运动.由此可以确定(  )
①这列波的波长为8.0m,周期为2.0s
②这列波的波速为20m/s,频率是2.5Hz
③在0.30s末D质点刚开始振动
④在0.30s末D质点第一次达到正向最大位移.
A.①③B.②④C.②③D.①④

查看答案和解析>>

同步练习册答案