精英家教网 > 高中物理 > 题目详情
2.如图,半径R=0.5m的光滑圆弧轨道ABC与足够长的粗糙轨道CD在C处平滑连接,O为圆弧轨道ABC的圆心,B点为圆弧轨道的最低点.半径OA、OC与OB的夹角分别为53°和37°.将一个质量m=0.5kg的物体(视为质点)从A点左侧高为h=0.8m处的P点水平抛出,恰从A点沿切线方向进入圆弧轨道.已知物体与轨道CD间的动摩擦因数μ=0.8,重力加速度g=l0m/s2,sin37°=0.6,cos37°=0.8,求:
(1)物体水平抛出时的初速度大小v0
(2)物体经过B点时,对圆弧轨道压力大小FN
(3)物体在轨道CD上运动的距离x.

分析 (1)物体做平抛运动,由自由落体运动的规律求出物体落在A时的竖直分速度,然后应用运动的合成与分解求出物体的初速度大小v0
(2)通过计算分析清楚物体的运动过程,由能量守恒定律求出物体在B点的速度,然后又牛顿第二定律求出物体对圆弧轨道压力大小FN
(3)先由机械能守恒求出物体在C点的速度,然后由动能定理即可求解.

解答 解:(1)物体在抛出后竖直方向做自由落体运动,竖直方向:${v}_{y}=\sqrt{2gh}=\sqrt{2×10×0.8}m/s=4$m/s
物体恰从A点沿切线方向进入圆弧轨道,则:$\frac{{v}_{y}}{{v}_{0}}=tan53°$

得:${v}_{0}=\frac{{v}_{y}}{tan53°}=\frac{4}{\frac{4}{3}}m/s=3$m/s
(2)物体到达A点的速度:$v=\sqrt{{v}_{0}^{2}+{v}_{y}^{2}}=\sqrt{{4}^{2}+{3}^{2}}m/s=5$m/s
A到B的过程中机械能守恒,得:$\frac{1}{2}m{v}^{2}+mgR(1-cos53°)=\frac{1}{2}m{v}_{B}^{2}$
代入数据得:${v}_{B}=\sqrt{29}$m/s
物体在B点受到的支持力与重力的合力提供向心力,则:${F}_{N}-mg=\frac{m{v}_{B}^{2}}{R}$
得:FN=34N;
(3)B到C的过程中机械能守恒,得:$\frac{1}{2}m{v}_{C}^{2}+mgR(1-cos37°)=\frac{1}{2}m{v}_{B}^{2}$
得:${v}_{C}=\sqrt{27}$m/s
物体在斜面CD上受到的摩擦力:f=μmgcos37°=0.8×0.5×10×0.8N=3.2N
设物体在轨道CD上运动的距离x,则:$-fx-mg•xsin37°=0-\frac{1}{2}m{v}_{C}^{2}$
解得:x=1.09m;
答:(1)物体水平抛出时的初速度大小是3m/s;(2)物体经过B点时,对圆弧轨道压力大小是34N;(3)物体在轨道CD上运动的距离是1.09m.

点评 本题关键是分析清楚物体的运动情况,然后根据动能定理、平抛运动知识、能量守恒定理解题.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

12.质谱仪是测量带电粒子的质量和分析同位素的重要工具.如图所示为质谱仪的原理示意图,现利用质谱仪对氢元素进行测量.让氢元素三种同位素的离子流从容器A下方的小孔s无初速度飘入电势差为U的加速电场.加速后垂直进入磁感强度为B的匀强磁场中.氢的三种同位素最后打在照相底片D上,形成a、b、c三条“质谱线”.则下列判断正确的是(  )
A.进入磁场时速度从大到小排列的顺序是氕、氘、氚
B.进入磁场时动能从大到小排列的顺序是氕、氘、氚
C.在磁场中运动时间由大到小排列的顺序是氕、氘、氚
D.a、b、C三条“质谱线”依次排列的顺序是氕、氘、氚

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

13.如图a所示的平面坐标系xOy,在整个区域内充满了匀强磁场,磁场方向垂直坐标平面,磁感应强度B随时间变化的关系如图b所示.开始时刻,磁场方向垂直纸面向内(如图),t=0时刻有一带正电的粒子(不计重力)从坐标原点O沿x轴正向进入磁场,初速度为v0=2×103m/s.已知带电粒子的比荷为$\frac{q}{m}$=1.0×104C/kg,其它有关数据见图中标示.试求:

(1)t1=$\frac{4π}{3}$×10-4s时粒子所处位置的坐标(x1,y1);
(2)带电粒子进入磁场运动后第一次到达y轴时离出发点的距离h;
(3)带电粒子是否还可以返回原点?如果可以,求返回原点经历的时间t′.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

10.如图所示,在一根足够长的竖直绝缘杆上,套着一个质量为m、带电量为-q的小球,球与杆之间的动摩擦因数为μ.场强为E的匀强电场和磁感应强度为B的匀强磁场方向如图所示,小球由静止开始下落.求:
(1)小球开始下落的加速度:
(2)小球的速度多大时,有最大加速度,它们的值是多少?
(3)小球运动的最大速度为多少?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

17.如图所示,质量M=8.0kg,长L=2.0m的薄木板静置在光滑的水平面上,质量m=0.50kg的小滑块(可视为质点)以速度v0=3.0m/s从木板的左端冲上木板,已知滑块与木板间的动摩擦因数μ=0.20,重力加速度g取10m/s2.(假定滑块与木板之间最大静摩擦力与滑动摩擦力相等),求:
(1)若木板固定,滑块将从木板的右端滑出
a.滑块在木板上滑行的时间t;
b.滑块从木板右端滑出时的速度v.
(2)若木板不固定,在小滑块冲上木板的同时,对木板施加一个水平向右的恒力F.如果要使滑块刚运动到木板的最右侧时,两者达到共同的速度v1.则
c.共同的速度v1的大小;
d.水平向右的恒力F的大小.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

7.如图,一束激光垂直于AC面照射到等边玻璃三棱镜的AB面上,已知AB面的反射光线与折线光线的夹角为90°.光在空中的传播速度为c.求:
①玻璃的折射率;
②激光在玻璃种传播的速度.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

14.一辆汽车从车站由静止开始以加速度a1沿平直公路行驶时间t1、驶过的位移S1时,发现有一乘客没有上车,立即关闭发动机刹车.若刹车的加速度为a2,经时间t2滑行S2汽车停止.则下列表达式正确的是(  )
A.$\frac{{S}_{1}}{{S}_{2}}$=$\frac{{t}_{2}}{{t}_{1}}$B.$\frac{{a}_{1}}{{a}_{2}}$=$\frac{{t}_{2}}{{t}_{1}}$
C.$\frac{{S}_{1}}{{S}_{2}}$=$\frac{{a}_{1}}{{a}_{2}}$D.$\frac{{S}_{1}}{{S}_{2}}$=$\frac{{t}_{1}^{2}}{{t}_{1}^{2}}$

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

12.已知地球质量是月球质量的a倍,地球半径是月球半径的b倍,下列结论中正确的是(  )
A.地球表面和月球表面的重力加速度之比为$\frac{a}{b}$
B.环绕地球表面和月球表面运行卫星的速率之比为$\sqrt{\frac{a}{b}}$
C.环绕地球表面和月球表面运行卫星的周期之比为$\sqrt{\frac{b}{a}}$
D.环绕地球表面和月球表面运行卫星的角速度之比为$\sqrt{\frac{{b}^{3}}{a}}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

13.卡车原来以10m/s的速度在平直公路上匀速行驶,因为路口出现红灯,司机从较远的地方开始刹车,使卡车匀减速前进,经过8s车减速到2m/s,此时交通灯转为绿灯,司机当即停止刹车.试求减速过程中加速度和位移的大小.

查看答案和解析>>

同步练习册答案