精英家教网 > 高中物理 > 题目详情
17.已知火星质量约为地球质量的0.1倍,火星表面附近引力加速度约为地表附近重力加速度的0.4倍.将火星和地球的半径比记为k,火星的近地卫星和地球的近地卫星的环绕速度之比记为n,则(  )
A.k=$\frac{1}{2}$B.k=2C.n=$\frac{1}{\sqrt{5}}$D.n=$\sqrt{5}$

分析 卫星绕行星做匀速圆周运动,万有引力提供向心力,即:$\frac{GMm}{{R}^{2}}=\frac{m{v}^{2}}{R}$;求忽略球体自转的影响,万有引力等于重力,即:$\frac{GMm}{{R}^{2}}=mg$,两式联立解得卫星的速度的表达式,再相比即可.

解答 解:卫星绕行星做匀速圆周运动,万有引力提供向心力,即:$\frac{GMm}{{R}^{2}}=\frac{m{v}^{2}}{R}$①
忽略球体自转的影响,万有引力等于重力,即:$\frac{GMm}{{R}^{2}}=mg$  ②
联立两式解得:$v=\sqrt{gR}$
行星卫星的环绕速度与地球卫星环绕速度之比为:$\frac{{v}_{火}}{{v}_{地}}=\frac{\sqrt{{g}_{火}{R}_{火}}}{\sqrt{{g}_{地}{R}_{地}}}=\sqrt{0.4k}=n$ ③
①②③联立求解得:$k=\frac{1}{2}$ $n=\frac{1}{\sqrt{5}}$
故AC正确,BD错误;
故选:AC.

点评 本题首先要搞懂什么是环绕速度.求宇宙速度往往建立如下模型:卫星绕天体附近做匀速圆周运动,卫星所需要的向心力来源于天体对它的万有引力,建立方程,加上数学变换即可求解

练习册系列答案
相关习题

科目:高中物理 来源: 题型:填空题

20.一物体从某高度以初速度v0水平抛出,落地时速度大小为vt,则它运动时间为t=$\frac{\sqrt{{{v}_{t}}^{2}-{{v}_{0}}^{2}}}{g}$.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

8.要发射一颗人造地球卫星,使它在半径为r2的预定轨道上绕地球做匀速圆周运动,为此先将卫星发射到半径为r1的近地暂行轨道上绕地球做匀速圆周运动.如图所示,在A点,使卫星速度瞬时增加,从而使卫星进入一个椭圆的转移轨道上,当卫星到达转移轨道的远地点B时,再次瞬时改变卫星速度,使它进入预定轨道运行.已知地球表面的重力加速度大小为g,地球的半径为R,则卫星在半径为r1的近地暂行轨道上的运动周期为$T=2π\sqrt{\frac{{{r}_{1}}^{3}}{GM}}$,卫星从半径为r1的近地暂行轨道上的A点转移到半径为r2的预定轨道上的B点所需时间为$\frac{π({r}_{1}+{r}_{2})}{2R}\sqrt{\frac{{r}_{1}+{r}_{2}}{2g}}$.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

5.某同学为了验证机械能守恒定律设置了如下实验,实验装置如图1所示,在铁架台上端铁架悬挂一个摆球,为了测定摆球在最低点的速度,在该位置安装了一个光电门连接数字计时器,通过数字计时器可知道摆球通过光电门的时间,实验时把摆球摆线拉至水平,由静止开始释放摆球.

(1)用螺旋测微计测量摆球的直径,螺旋测微计显示摆球直径D=10.294mm
(2)数字计时器得到摆球通过最低点的时间为t,则摆球在最低的速度V=$\frac{D}{t}$(用字母表示).
(3)已知摆线长度L=50cm,摆球质量m=1kg,t=3.3ms(1000ms=1s)则摆球的重力势能减少量为EP=4.90J,动能的增加量为EK=4.87J(小数点后面保留两位有效数字).
(4)根据数据,得出实验结论:在误差允许范围内,摆球的机械能守恒.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

12.宇航员在地面附近以一定的初速度v0竖直上抛一个小球,经时间t小球回落原处;若他在某未知星球表面以相同的初速度v0竖直上抛同一小球,发现需经5t的时间小球才落回原处.已知地球表面附近的重力加速度g=10m/s2.现把两个星球都处理成质量分布均匀的球体,在不考虑未知星体和地球自转和空气阻力影响的情况下,试分析:
(1)该未知星球表面附近的重力加速度g′的大小?
(2)若已测得该未知星球的半径和地球的半径之比为$\frac{R_星}{R_地}=\frac{1}{4}$,求该星球的质量与地球的质量之比$\frac{M_星}{M_地}$.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

2.在实验室中测量某种绕线电阻的电阻率.已知绕线金属丝是某种合金丝,电阻阻值约为6Ω,接下来,用螺旋测微器测得金属丝的直径为d,用毫米刻度尺测得金属丝的长度为l,为了更加精确测量绕线金属丝的阻值R,实验室提供的器材有:
A.电流表A1(量程0~0.3A,内阻约为RA1=5Ω)
B.电流表A2(量程0~0.6A,内阻约为RA2=1Ω)
C.电压表V1(量程0~3V,内阻约3kΩ)
D.电压表V2(量程0~15V,内阻约18kΩ)
E.定值电阻R0=5Ω
F.滑动变阻器R1(总阻值5Ω)
G.滑动变阻器R2(总阻值100Ω)
H.电源(电动势E=9V,内阻约为1Ω)
I.开关和导线若干.
(1)用伏安法测量该电阻的阻值时,为了尽可能多的获得实验数据,实验中电流表应选用B,电压表应选用C,滑动变阻器应选用F(填器材前面的字母代号);
(2)方框中已画出部分实验电路,请你完成电路图的剩余部分;
(3)按照设计好的电路进行实验操作,某次测量过程中电表示数分别为U和I,则R=$\frac{U}{I}$,绕线金属丝电阻率为$\frac{π{d}^{2}U}{4lI}$(用R,I,d和数学常数表示)

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

9.图甲是小型交流发电机的示意图,在匀强磁场中,一矩形金属线圈绕与磁场方向垂直的轴匀速转动,产生的电动势随时间变化的正弦规律图象如图乙所示.发电机线圈内阻为10Ω,外接一只电阻为90Ω的灯泡,不计电路的其他电阻,则(  )
A.t=0时刻线圈平面处于中性面B.每秒钟内电流方向改变100次
C.灯泡两端的电压为22VD.0~0.01s时间内通过灯泡的电量为0

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

6.如图,固定在地面的斜面体上开有光滑凹槽,槽内紧挨放置六个相同小球,各球编号如图.斜面与水平光滑轨道OA平滑连接,现将六个小球从6~1由静止逐个释放,小球离开A点后,落到水平地方上,不计空气阻力,下列说法正确的是(  )
A.球1落地时的动能最大
B.球6离开A点到落地的所用时间最短
C.六个小球的在运动过程中机械能不守恒
D.六个球落地点各不相同

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

7.下列叙述中,符合物理发展历程的是(  )
A.法拉第最早发现了电流的磁效应
B.牛顿发现了万有引力定律并通过扭秤实验测定出了万有引力常量G
C.牛顿应用“理想斜面实验”推翻了“力是维持物体运动的原因”的观点
D.伽利略认为两个从同一高度自由落下的物体,重物体与轻物体下落一样快

查看答案和解析>>

同步练习册答案