精英家教网 > 高中物理 > 题目详情
11.如图所示,飞行器P绕某星球做匀速圆周运动,星球相对飞行器P的角度为θ,己知万有引力常量G,下列说法正确的是(  )
A.张角越大,飞行器P的周期越长
B.若测得张角和轨道半径,可得到飞行器P的质量
C.若测得周期和张角,可得到星球的平均密度
D.若测得周期和轨道半径,可得到星球的平均密度

分析 根据开普勒第三定律,分析周期与轨道半径的关系;飞行器P绕某星球做匀速圆周运动,由星球的万有引力提供向心力,根据万有引力定律和几何知识、密度公式可求解星球的平均密度.

解答 解:A、由图可知轨道半径越小,张角越大,根据开普勒第三定律$\frac{{r}^{3}}{{T}^{2}}=k$,张角越大,飞行器的周期越小,故A错误;
B、根据万有引力提供向心力公式可知,飞行器P的质量在公式两边约去,不能求出飞行器P的质量,故B错误;
C、设星球的质量为M,半径为R,平均密度为,ρ.张角为θ,飞行器的质量为m,轨道半径为r,周期为T.
对于飞行器,根据万有引力提供向心力得:G$\frac{Mm}{{r}^{2}}$=m$\frac{4{π}^{2}}{{T}^{2}}$r
由几何关系有:R=rsin$\frac{θ}{2}$,
星球的平均密度 ρ=$\frac{M}{\frac{4}{3}π{R}^{2}}$
由以上三式知测得周期和张角,可得到星球的平均密度.故C正确;
D、由G$\frac{Mm}{{r}^{2}}$=m$\frac{4{π}^{2}}{{T}^{2}}$r可得:M=$\frac{4π{r}^{3}}{G{T}^{2}}$,可知若测得周期和轨道半径,可得到星球的质量,但星球的半径未知,不能求出星球的平均密度,故D错误.
故选:C

点评 本题关键掌握开普勒定律和万有引力等于向心力这一基本思路,结合几何知识进行解题,注意不能求解环绕天体的质量.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

13.2009年5月12日中央电视台《今日说法》栏目报道了发生在湖南长沙某公路上的离奇交通事故:在公路转弯处外侧的李先生家门口,三个月内连续发生了八次大卡车侧翻的交通事故.经公安部门和交通部门协力调查,画出的现场示意图如图所示.为了避免事故再次发生,很多人提出了建议,下列建议中不合理的是(  )
A.在进入转弯处设立限速标志,提醒司机不要超速转弯
B.在进入转弯处设立限载标志,要求降低车载货物的重量
C.改进路面设计,增大车轮与路面间的摩擦
D.改造此段弯路,使弯道内侧低、外侧高

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

14.弹跳杆运动是一项广受欢迎的运动.某种弹跳杆的结构如图甲所示,一根弹簧套在T型跳杆上,弹簧的下端固定在跳杆的底部,上端固定在一个套在跳杆上的脚踏板底部.一质量为M的小孩站在该种弹跳杆的脚踏板上,当他和跳杆处于竖直静止状态时,弹簧的压缩量为x0.从此刻起小孩做了一系列预备动作,使弹簧达到最大压缩量3x0,如图乙(a)所示;此后他开始进入正式的运动阶段.在正式运动阶段,小孩先保持稳定姿态竖直上升,在弹簧恢复原长时,小孩抓住跳杆,使得他和弹跳杆瞬间达到共同速度,如图乙(b)所示;紧接着他保持稳定姿态竖直上升到最大高度,如图乙(c)所示;然后自由下落.跳杆下端触地(不反弹)的同时小孩采取动作,使弹簧最大压缩量再次达到3x0;此后又保持稳定姿态竖直上升,…,重复上述过程.小孩运动的全过程中弹簧始终处于弹性限度内.已知跳杆的质量为m,重力加速度为g.空气阻力、弹簧和脚踏板的质量、以及弹簧和脚踏板与跳杆间的摩擦均可忽略不计.
(1)求弹跳杆中弹簧的劲度系数k,并在图丙中画出该弹簧弹力F的大小随弹簧压缩量x变化的示意图;
(2)借助弹簧弹力的大小F随弹簧压缩量x变化的F-x图象可以确定弹力做功的规律,在此基础上,求在图乙所示的过程中,小孩在上升阶段的最大速率;
(3)求在图乙所示的过程中,弹跳杆下端离地的最大高度.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

11.如图所示,小球位于光滑的斜面上,斜面位于光滑的水平地面上,从地面上看,在小球沿斜下滑的过程中,斜面对小球的作用力(  )
A.垂直于接触面,做功为零B.垂直于接触面,做负功
C.不垂直于接触面,做功为零D.不垂直于接触面,做功不为零

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

6.如图所示为某款四旋翼飞机,通过控制器可调整输出功率与旋翼转速,从而调整动力大小与方向,以达到改变飞机飞行状态的目的.某次试飞中,调控员控制飞机以恒定的输出功率,控制飞机从水平地面上由静止开始沿竖直方向向上运动,经过4.0s,飞机达到最大速度10m/s.已知飞机的质量为40g,在飞行过程中空气阻力大小恒为0.10m/s2,重力加速度取g=10m/s2,求:
(1)4.0s末飞机受到的升力大小;
(2)飞机的输出功率;
(3)4.0s内飞机上升的高度.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.“抛石机”是古代战争中常用的一种设备,它实际上是一个费力杠杆.如图所示,某学习小组用自制的抛石机演练抛石过程.所用抛石机长臂的长度L=4.8m,质量m=10.0㎏的石块装在长臂末端的口袋中.开始时长臂处于静止状态,与水平面间的夹角α=30°.现对短臂施力,当长臂转到竖直位置时立即停止转动,石块被水平抛出,其落地位置与抛出位置间的水平距离x=19.2m.不计空气阻力,重力加速度取g=10m/s2.求:
(1)石块刚被抛出时的速度大小v0
(2)石块刚落地时的速度vt的大小和方向;
(3)在石块从开始运动到被抛出的过程中,抛石机对石块所做的功W.

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

3.某同学利用如图所示装置探究小磁铁在铜管中下落时受电磁阻尼作用的运动规律.打点计时器的电源为50Hz的交流电.

(1)该同学将磁铁从管口处释放,小磁铁拖着纸带运动,穿过铜管.取下纸带,确定一合适的点为O点,每隔一个计时点取一个计数点,标为1、2、3、…、8,用刻度尺量出各计时点的相邻计时点到O点的距离,记录在纸带上,如图乙所示.
(1)计算相邻计时点间的平均速度$\overline{v}$,粗略地表示各计时点的速度,抄入下表,请将表中的数据补充完整.
位置12345678
$\overline{v}$(cm/s)24.533.837.839.039.539.839.839.8
(2)分析如表的实验数据可知:在这段纸带记录的时间内,磁铁运动速度的变化情况是逐渐增大到39.8cm/s,形成这种运动的原因是随着速度的增大磁铁受到的阻尼作用逐渐增大,最后等于重力的大小.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

20.甲图为某简谐机械横波在t=0时刻波的图象,乙图为波的传播方向上某质点的振动图象.下列说法正确的是(  )
A.该波的波速是25m/s
B.该波一定沿x轴负方向传播
C.若乙是质点P的振动图象,则t=0.35s时刻,质点Q的坐标为(3m、-5cm)
D.若乙是质点Q的振动图象,则t=0.35s时刻,质点P的坐标为(8m、Ocm)

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

1.如图甲是某同学测量重力加速度的装置,他将质量均为M的两个重物用轻绳连接,放在光滑的轻质滑轮上,这时系统处于静止状态.该同学在左侧重物上附加一质量为m的小重物,这时,由于小重物m的重力作用而使系统做初速度为零的缓慢加速运动,该同学用某种办法测出系统运动的加速度并记录下来.完成一次实验后,换用不同质量的小重物,并多次重复实验,测出不同m时系统的加速度a并作好记录.
(1)若选定物块从静止开始下落的过程进行测量,则需要测量的物理量有
A.小重物的质量m                 
B.大重物的质量M
C.绳子的长度                     
D.重物下落的距离及下落这段距离所用的时间
(2)经过多次重复实验,得到多组a、m数据,做出$\frac{1}{a}$-$\frac{1}{m}$图象,如图乙所示,已知该图象斜率为k,纵轴截距为b,则可求出当地的重力加速度g=$\frac{1}{b}$,并可求出重物质量M=$\frac{k}{2b}$.(用k和b表示)

查看答案和解析>>

同步练习册答案