精英家教网 > 高中物理 > 题目详情
10.2013年12月14日21时11分,“嫦娥三号”在月球正面的虹湾以东地区着陆,假设着陆前,“嫦娥三号”探月卫星绕月球表面匀速飞行(不计周围其他天体的影响),宇航员测出“嫦娥三号”飞行N圈用时为t,已知地球质量为M,地球半径为R,月球半径为r,地球表面重力加速度为g,则(  )
A.“嫦娥三号”探月卫星匀速飞行的速度为$\frac{2πNR}{t}$
B.月球的平均密度为$\frac{3πM{N}^{2}}{g{r}^{2}{t}^{2}}$
C.“嫦娥三号”探月卫星的质量为$\frac{4{π}^{2}{N}^{2}{r}^{3}}{g{R}^{2}{t}^{2}}$
D.“嫦娥三号”探月卫星绕月球表面匀速飞行的向心加速度为$\frac{4{π}^{2}{N}^{2}r}{{t}^{2}}$

分析 由T=$\frac{t}{N}$求出“嫦娥三号”探月卫星匀速飞行的周期,由T=$\frac{2πR}{v}$求解其速度.根据万有引力等于向心力,列式求出月球的质量,再求解月球的密度.

解答 解:A、“嫦娥三号”探月卫星匀速飞行的周期为 T=$\frac{t}{N}$
由T=$\frac{2πr}{v}$,得卫星匀速飞行的速度 v=$\frac{2πNr}{t}$,故A错误.
B、根据G$\frac{Mm}{{r}^{2}}$=m$\frac{4{π}^{2}}{{T}^{2}}r$,得月球的质量为 M=$\frac{4{π}^{2}{r}^{3}}{G{T}^{2}}$=$\frac{4{π}^{2}{r}^{3}{N}^{2}}{G{t}^{2}}$
月球的密度 ρ=$\frac{M}{\frac{4}{3}π{r}^{3}}$=$\frac{3π{N}^{2}}{G{t}^{2}}$.故B错误.
C、由上式可知,不能解出卫星的质量,故C错误.
D、“嫦娥三号”探月卫星绕月球表面匀速飞行的向心加速度为 a=$\frac{4{π}^{2}}{{T}^{2}}r$=$\frac{4{π}^{2}{N}^{2}r}{{t}^{2}}$,故D正确.
故选:D.

点评 解决本题的关键掌握万有引力的两个重要理论:1、万有引力等于重力,2、万有引力提供向心力,并能灵活运用.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:选择题

20.地球表面附近某区域存在大小为1.5×102N/C、方向竖直向下的电场.将一质量为1.0×10-4kg、带电量为+1.0×10-7C的小球由静止释放,则该小球在此区域内下落10m的过程中,其电势能和动能的变化情况为(不计空气阻力,重力加速度g=10m/s2)(  )
A.电势能增大1.5×10-4J,动能增大 1.015×10-2J
B.电势能减小1.5×10-4J,动能增大 0.985×10-2J
C.电势能减小1.5×10-4J,动能增大 1.015×10-2J
D.电势能增大1.5×10-4J,动能增大 0.985×10-2J

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

1.如图所示,长为L的轻杆下端用铰链固定在光滑的水平面上的C点,上端有一个质量为m的光滑小球A(视为质点),小球旁轻靠有一正方体滑块B.若用一大小为mg的水平恒力(g为重力加速度大小)向右作用于小球A,当杆与水平面成θ=30°角时A、B恰好分离,求:(提示:在圆周运动过程中任一点,质点所受的向心力与其速率的关系为F=m$\frac{{v}^{2}}{L}$)
(1)A、B分离瞬间球A的速度大小;
(2)滑块B的质量M;
(3)球A刚要触地时球对杆的作用力F大小和方向.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

18.一底面半径为R的半圆柱形透明体的折射率为n=$\sqrt{3}$,横截面如图所示,O表示半圆柱形截面的圆心.一束极窄的光线在横截面内从AOB边上的极靠近A点处以60°的入射角入射,求:该光线从射入透明体到第一次射出透明体时,共经历的时间(已知真空中的光速为c;计算结果用R、n、c表示).

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

5.某同学装配了一台“5V,0.5A”的小直流电动机,线圈内阻小于1Ω.现要进一步研究这个小直流电动机在允许的输入电压范围内,输出功率与输入电压的关系,学校实验室提供的器材有:
直流电源E,电压6V,内阻不计;        小直流电动机M;
电压表V1,量程0~0.6V,内阻约3kΩ;   电压表V2,量程0~6V,内阻约15kΩ;
电流表A1,量程0~0.6A,内阻约1Ω;    电流表A2,量程0~3A,内阻约0.5Ω;
滑动变阻器R,0~10Ω,2A;           电键一只S,导线若干.

①首先要比较精确测量电动机的内阻r.根据合理的电路进行测量时,要控制电动机不转动,通过调节滑动变阻器,使电压表和电流表有合适的示数,电压表应该选V1.若电压表的示数为0.1V,电流表的示数为0.2A,则内阻r=0.5Ω.
②在图1方框中画出研究电动机的输出功率与输入电压的关系的实验电路图.(标明所选器材的符号)
③当电压表的示数为4.5V时,电流表示数如图2所示,此时电动机的输出功率是1.72W.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.如图所示,质量m=0.015kg的木块Q放在水平桌面上的A点.A的左边光滑,右边粗糙,与木块间的动摩擦因数μ=0.08.在如图所示的矩形区域内存在竖直向上的匀强电场和水平向里的匀强磁场,磁感应强调B=1T.场区的水平宽度d=0.8m,竖直方向高h=0.6m.带正电的小球P,质量M=0.03kg,电荷量q=0.015C,以v0=0.5m/s的初速度向Q运动.与Q发生正碰后,P在电、磁场中做匀速圆周运动且运动的总时间t=4.0s.不计P和Q的大小,P、Q碰撞时无电量交换,重力加速度g取10m/s2,计算时取π=3,试求:

(1)匀强电场的电场强度E;
(2)P从电、磁场中出来时的速度大小和方向;
(3)如果P和Q碰撞时,系统满足Mv0+0=Mv+mQvQ(v为碰后P的速度,vQ为碰后Q的速度),求P从电、磁场中出来的时刻,Q所处的位置.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

2.如图所示,MNPQ是纸面内的一个长、宽之比为2:1的矩形,矩形内(包含边界)只存在与纸面平行的匀强电场或与纸面垂直的匀强磁场.现有一重力不计的带电粒子从M点沿MQ方向以初速度V0射入场区,则下列有关判断正确的是(  )
A.如果粒子从PN边射出场区,则矩形内存在的一定是电场
B.如果粒子射出的速度大小不变,则矩形内存在的一定是磁场
C.如果粒子再回到MN上(不包括M点)时的速度大小与初速度大小相等,则矩形内存在的一定是磁场
D.若增加粒子的速度大小,发现粒子射出场区的时间变长,则矩形内存在的一定是磁场

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

19.机械波某时刻的波形图线如图实线所示,已知波的传播速度大小v=1m/s,经一段时间t后,波形变为如图中虚线所示,则t的可能值为(  )
①1s
②3s
③5s
④7s.
A.只有①对B.只有②对C.只有①②对D.①②③④都对

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

20.如图所示的xoy坐标系中,x轴上方,y轴与MN之间区域内有沿x轴正向的匀强电场,场强的大小E1=1.5×105N/C;x轴上方,MN右侧足够大的区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B=0.2T.在原点O处有一粒子源,沿纸面向电场中各方向均匀地射出速率均为v0=1.0×106m/s的某种带正电粒子,粒子质量m=6.4×10-27kg,电荷量q=3.2×10-19C,粒子可以无阻碍地通过边界MN进入磁场.已知ON=0.2m.不计粒子的重力,图中MN与y轴平行.求:
(1)粒子进入磁场时的速度大小;
(2)求在电场中运动时间最长的粒子射出后第一次到达坐标轴时的坐标;
(3)若在MN右侧磁场空间内加一在xoy平面内的匀强电场E2,某一粒子从MN上的P点进入复合场中运动,先后经过了A(0.5m,yA)、C(0.3m,yc)两点,如图所示,粒子在A点的动能等于粒子在O点动能的7倍,粒子在C点的动能等于粒子在O点动能的5倍,求所加电场强度E2的大小和方向.

查看答案和解析>>

同步练习册答案