精英家教网 > 高中物理 > 题目详情
11.如图所示,足够长光滑斜面与水平面的夹角为37°,斜面下端与半径R=0.50m的半圆形凹槽平滑相接,相接点为A,半圆形凹槽的最低点为B,半圆形凹槽的最高点为C,已知sin37°=0.60,cos37°=0.80,g=10m/s2
(1)若将质量为m=0.10kg的小球从斜面上距离A点为l=2.0m的D点由静止释放,则小球到达半圆形凹槽最低点B时,对凹槽的压力多大?
(2)要使小球经过凹槽最高点C时不能脱离凹槽,则小球经过C点时速度大小应满足什么条件?
(3)当小球经过C点处的速度大小为多大时,小球与斜面发生一次弹性碰撞后还能沿原来的运动轨迹返回C点?

分析 (1)小球从D运动到B过程,只有重力做功,机械能守恒,由此求出小球到达B点时的速度,再由牛顿运动定律求小球到达半圆形凹槽最低点B时对凹槽的压力.
(2)要使小球经过凹槽最高点C时不能脱离凹槽,经过C点时向心力不小于重力的径向分力.由牛顿第二定律求解.
(3)小球与斜面发生弹性碰撞后还能沿原来的运动轨迹返回C点,小球的速度必须与斜面垂直.由斜抛运动的规律和速度条件结合求解.

解答 解:(1)小球从D运动到B过程,由机械能守恒,得:
mg[lsin37°+R(1-cos37°)=$\frac{1}{2}m{v}_{B}^{2}$
在B点,有 N-mg=m$\frac{{v}_{B}^{2}}{R}$
联立得:N=6.2N
由牛顿第三定律得:小球到达半圆形凹槽最低点B时对凹槽的压力 N′=N=6.2N
(2)要使小球经过凹槽最高点C时不能脱离凹槽,必有满足 mgcos37°≤m$\frac{{v}_{C}^{2}}{R}$
即得 vC≥$\sqrt{gRcos37°}$=$\sqrt{10×0.5×0.8}$=2m/s
(3)小球与斜面发生弹性碰撞后还能沿原来的运动轨迹返回C点,小球的速度必须与斜面垂直.
建立如图的坐标系.
则x轴方向的分加速度为 ax=-gsin37°,
y轴方向的分加速度为 ay=gcos37°
且有 vC+axt=0,2R=$\frac{1}{2}{a}_{y}{t}^{2}$
联立解得 vC=12m/s
答:
(1)小球到达半圆形凹槽最低点B时,对凹槽的压力为6.2N.
(2)小球经过C点时速度大小应满足的条件是:vC≥2m/s.
(3)当小球经过C点处的速度大小为12m/s时,小球与斜面发生一次弹性碰撞后还能沿原来的运动轨迹返回C点.

点评 解决本题的关键理清物块的运动过程,把握隐含的临界条件,明确小球到达C点的临界条件是轨道对小球没有作用力,由重力的径向分力提供向心力.小球只有垂直撞上斜面,才能沿原路返回.对斜抛要灵活选择坐标系,使得以简化.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

14.人造地球卫星在运行过程中由于受到微小的阻力,轨道半径将缓慢减小.在此运动过程中,卫星所受万有引力大小将增大(选填“减小”、“增大”或“不变”);其线速度将增大(选填“减小”、“增大”或“不变”).

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.如图所示,竖直平面内有一半径为r、电阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R.在MN上方及CD下方有水平方向的匀强磁场I和II,磁场I的磁感应强度大小为2B;磁场II的磁感应强度为3B.现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止开始下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,平行轨道足够长.已知导体棒ab下落$\frac{r}{2}$时的速度大小为v1,下落到MN处的速度大小为v2
(1)求导体棒ab从A下落$\frac{r}{2}$时的加速度大小.
(2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和R2上的电功率P2
(3)若将磁场II的CD边界略微下移,导体棒ab刚进入磁场II时速度大小为v3,要使其在外力F作用下做匀加速直线运动,加速度大小为a,求所加外力F随时间t变化的关系式.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

12.两块相同的直角棱镜与一块等腰棱镜拼接成如图所示的组合棱镜,称为直视棱镜.在主截面内,与底面平行的光线由左方射入棱镜,光线等高地从右面棱镜平行射出,犹如棱镜不存在一样.已知直角棱镜的折射率为n1=$\sqrt{2}$,等腰棱镜的折射率为n2=$\sqrt{3}$,不考虑底面的发射,求等腰棱镜的顶角α.(当光以入射角θ1从折射率为n1的介质入射到折射率为n2的介质中时,折射角为θ2,则它们满足关系式n1•sinθ1=n2•sinθ2

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

6.如图所示,绝缘倾斜固定轨道上A点处有一带负电,电量大小q=0.4C质量为0.3kg的小物体,斜面下端B点有一小圆弧刚好与一水平放置的薄板相接,AB点之间的距离S=1.92m,斜面与水平面夹角θ=37°,物体与倾斜轨道部分摩擦因数为0.2,斜面空间内有水平向左,大小为E1=10V/m的匀强电场,现让小物块从A点由静止释放,到达B点后冲上薄板,薄板由新型材料制成,质量M=0.6kg,长度为L,物体与薄板的动摩擦因数μ=0.4,放置在高H=1.6m的光滑平台上,此时,在平台上方虚线空间BCIJ内加上水平向右,大小为E2=1.5V/m的匀强电场,经t=0.5s后,改成另一的电场E3,其方向水平向左或者向右,在此过程中,薄板一直加速,到达平台右端C点时,物体刚好滑到薄板右端,且与薄板共速,由于C点有一固定障碍物,使薄板立即停止,而小物体则以此速度V水平飞出,恰好能从高h=0.8m的固定斜面顶端D点沿倾角为53°的斜面无碰撞地下滑,(重力加速度g=10m/s2,sin37°=$\frac{3}{5}$,cos37°=$\frac{4}{5}$).

求:(1)小物体水平飞出的速度v及斜面距平台的距离X;
(2)小物体运动到B点时的速度VB
(3)电场E3的大小和方向.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.为了演示大气压随高度而变化的现象,某同学采用了如图所示的装置,图中A为保温瓶(容积为2.5L),B为橡皮塞,C为长约30cm的直角转弯玻璃管(横截面积为0.125cm2),d是一小段有颜色的水柱,手持保温瓶,尽量让玻璃管保持水平,当人由下蹲变为站立再将双手举起的过程中,管中水柱会有比较明显外移,从而显示了大气压随高度而变化的现象.
(1)当该同学拿着保温瓶上楼时,发现每上一层楼,水柱在水平管内都会移动相同的距离,由此他判断出地面附近的大气压随高度h的变化最接近图(b)中的B(只需填字母,并设地面大气压为760mmHg)

(2)若将玻璃管管口略向下倾斜,大气压随高度h的变化最接近图A.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

3.如图,三卫星分别处在轨道1、轨道2、轨道3,其中轨道2为同步卫星轨道,下列说法正确的是(  )
A.轨道3的线速度最大,轨道1的线速度最小
B.轨道3的向心力最小,轨道1的向心力最大
C.轨道2的周期为24小时
D.轨道3的周期最大,轨道1的周期最小

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

20.2014年12月26日,我国东部14省市ETC联网正式启动运行,ETC是电子不停车收费系统的简称,汽车分别通过ETC通道和人工收费通道的流程如图所示,假设道路上有并行的甲、乙两汽车都以v1=20m/s朝收费站正常沿直线行驶,现加成过ETC通道,需要在某位置开始做匀减速运动,到达虚线EF处处速度正好减为v2=4m/s,在虚线EF与收费站中心线之间以4m/s的速度匀速行驶,通过收费站中心线后才加速行驶离开,已知甲匀减速过程的加速度大小为a1=1m/s2,虚线EF处与收费站中心线距离d=10m,乙车过人工收费通道,需要在中心线某位置开始做匀减速运动,至中心线处恰好速度为零,进过缴费成功后再启动汽车行驶离开,已知乙车匀减速过程的加速度大小为a2=2m/s2,求:
(1)汽车过ETC通道时,从开始减速到收费站中心线过程中的位移大小;
(2)乙车比甲车提前多少时间到收费站中心线.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

1.在倾角为θ的光滑固定斜面上有两个用轻弹簧连接的物块A和B,它们的质量分别为m和2m,弹簧的劲度系数为k,C为一固定挡板,系统处于静止状态.现用一沿斜面方向的恒力拉物块A使之沿斜面向上运动,当B刚离开C时,A的速度为v,加速度为a,且方向沿斜面向上.设弹簧始终处于弹性限度内,重力加速度为g,则(  )
A.当B刚离开C时,A发生的位移大小为$\frac{3mgsinθ}{k}$
B.从静止到B刚离开C的过程中,物块A克服重力做功为$\frac{3{m}^{2}{g}^{2}sinθ}{k}$
C.B刚离开C时,恒力对A做功的功率为(2mgsinθ+ma)v
D.当A的速度达到最大时,B的加速度大小为$\frac{a}{2}$

查看答案和解析>>

同步练习册答案