精英家教网 > 高中物理 > 题目详情
7.如图,上下边界间距为l、方向水平向里的匀强磁场区域位于地面上方高l处.质量为m、边长为l、电阻为R的正方形线框距离磁场的上边界l处,沿水平方向抛出,线框的下边界进入磁场时加速度为零.则线框从抛出到触地的过程中(  )
A.沿水平方向的分运动始终是匀速运动
B.磁场的磁感应强度为$\sqrt{\frac{mgR}{2g{l}^{3}}}$
C.产生的电能为2mgl
D.运动时间为2$\sqrt{\frac{2l}{g}}$

分析 A、依据左手定则判定安培力方向,再结合安培力大小表达式,及矢量的合成法则,即可判定;
B、根据线框的下边界进入磁场时加速度为零,即有重力等于安培力,结合安培力表达式,即可求解;
C、根据功能关系,结合匀速下落,即可求解产生电能;
D、依据运动的合成与分解,结合自由落体运动学公式,求解进入磁场时,竖直方向的速度,再利用匀速下落,即可求解.

解答 解:A、线框进入磁场后,因切割磁感应线,从而产生感应电流,依据左手定则可知,两竖直边的安培力方向相反,因安培力的大小相等,则水平方向线框受到的合力为零,则水平方向做匀速直线运动,故A正确;
B、线框的下边界进入磁场时加速度为零,即处于平衡状态,则有:mg=BIl,
而闭合电路欧姆定律,则有:I=$\frac{Blv}{R}$=$\frac{Bl{v}_{y}}{R}$,
线框进入磁场的竖直方向速度为vy=$\sqrt{2gl}$,
综上所得,B=$\sqrt{\frac{mgR}{\sqrt{2g{l}^{5}}}}$,故B错误;
C、因线框进入磁场后,做匀速直线运动,那么减小的重力势能转化为电能,即产生的电能为Q=2mgl,故C正确;
D、根据分运动与合运动的等时性,并分析竖直方向的运动:先自由落体运动,后匀速下落,
自由落体运动的时间,t1=$\sqrt{\frac{2l}{g}}$,
因线框进入磁场的竖直方向速度为vy=$\sqrt{2gl}$,那么匀速运动的时间为t2=$\frac{2l}{{v}_{y}}$=$\sqrt{\frac{2l}{g}}$,
因此线框从抛出到触地的过程中,运动时间为t=t1+t2=2$\sqrt{\frac{2l}{g}}$,故D正确;
故选:ACD.

点评 考查运动的合成与分解的应用,掌握平抛运动处理规律,理解运动学公式的内容,注意安培力方向与大小的确定,及左手定则与右手定则的区别.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:填空题

17.一质量为m的人站在电梯中,电梯加速上升,加速度大小为$\frac{1}{4}$g(g为重力加速度),人对电梯底部的压力大小为$\frac{5}{4}$mg;此过程中电梯中的人处于超重状态(填“超重”或“失重”)

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

18.如图所示,水平面内有一个闭合导线(由细软导线制成)绕过两固定且光滑的小钉子A和D,以及E点处的动滑轮,一根橡皮筋两端连接动滑轮轴心和固定点O1,使各段导线保持绷紧拉直状态.以AD为直径、半径为R半圆形区域内,有磁感应强度大小为B、方向垂直水平面向下的有界匀强磁场.已知P点为半圆弧AD的中点,导线框的电阻为r.现将导线上的某点C以恒定角速度ω(相对圆心O)从D点沿圆弧移动的过程中,则下列说法正确的是(  )
A.当C点从D点沿圆弧移动到A点的过程中,导线框中感应电流的方向先为逆时针方向,后为顺时针方向
B.当C点从D点沿圆弧移动到图中上∠CAD=30°位置的过程中,通过导线横截面的电量为$\frac{\sqrt{3}B{R}^{2}}{2r}$
C.当C点沿圆弧移动到P点时,导线框中的感应电动势最大
D.当C点沿圆弧移动到A点时,导线框中的感应电动势最大

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.如图所示在半径为R的圆形区域有一磁感应强度为B的匀强磁场.一质量为m带电量为+q的粒子以某一速度从A点向着磁场圆心O点方向进入磁场后,沿着B点离开.已知∠AOB=120°,粒子重力不计.求
(1)粒子运动速度;
(2)粒子从A到B所用时间.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

2.一质量为1kg的物体从高空由静止下落,下落过程中所受空气阻力恒定,在开始一段时间内其位移x随时间t变化的关系图象如图所示.取g=10m/s2.物体下落过程中所受空气阻力的大小为(  )
A.1NB.2NC.3ND.4N

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

12.如图甲所示,在竖直边界MN的左侧存在与水平方向成θ=60°斜向右上方的匀强电场,其电场强度大小E1=$\sqrt{3}$N/C,在MN的右侧有竖直向上的匀强电场,其电场强度大小为E2=1.5N/C,同时,在MN的右侧还有水平向右的匀强电场E3和垂直纸面向里的匀强磁场B(图甲中均未画出),E1和B随时间变化的情况如图乙所示.现有一带正电的微粒,带电荷量q=1×10-5C,从左侧电场中距MN边界x1=$\sqrt{3}$m的A点无初速释放后,微粒水平向右进入MN右侧场区,设此时刻t=0,取g=10m/s2.求:
(1)带电微粒的质量m;
(2)带电微粒在MN右侧场区中运动了1.5s时的速度v(取2$\sqrt{5}$=4.5);
(3)带电微粒从A点运动到MN右侧场区中计时为1.5s的过程中,各电场对带电微粒做的总功W.(取3π=10)

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

19.一电器中的变压器可视为理想变压器,它将220V交变电流改为55V,已知变压器原线圈匝数为800,则副线圈匝数为(  )
A.100B.200C.1600D.6400

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

16.下列情况下的物体可以看做质点的是(  )
A.研究孙杨在里约奥运会游泳比赛中的手脚动作时
B.研究“八一”飞行队做特技飞行表演的飞机时
C.研究帆船手郭川横渡太平洋过程中所在位置时
D.研究“蛟龙号”深海采集硫化物“烟囱”碎片时

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

10.在如图所示宽度范围内,用场强为E的匀强电场可使初速度是v0的某种带正电粒子偏转θ角.在同样宽度范围内,若改用方向垂直于纸面向外的磁感应强度为B的匀强磁场,使该粒子穿过该区域,并使偏转角也为θ(不计粒子的重力),则(  )
A.电场强度E与磁感应强度B之比$\frac{E}{B}$=$\frac{{v}_{0}}{sinθ}$
B.电场强度E与磁感应强度B之比$\frac{E}{B}$=$\frac{{v}_{0}}{cosθ}$
C.粒子穿过电场和磁场的时间之比$\frac{{t}_{1}}{{t}_{2}}$=$\frac{sinθ}{θ}$
D.粒子穿过电场和磁场的时间之比$\frac{{t}_{1}}{{t}_{2}}$=$\frac{cosθ}{θ}$

查看答案和解析>>

同步练习册答案