精英家教网 > 高中物理 > 题目详情
2.如图a所示,在一平台上,用一弹簧弹射器将质量为m=0.6kg的小球弹出,小球进入半径R=0.6m的光滑半圆形轨道,做圆周运动,当小球转到最高点A后经t=0.8s小球落地,落地点B与A点的水平距离x=4.8m,小球可视为质点,不计空气阻力,g=10m/s2  求:

(1)平台距地面高度h;
(2)小球运动在 A点时对轨道的压力.
(3)若将半圆轨道换成内管道半径为r=0.4m半圆形管道,如图b所示,球弹入管道后在管内做圆周运动,当球运动到最高点时对管道内壁D点压力为3N,求小球在D点的速度为多大?

分析 (1)根据平抛运动的时间求出平抛运动的高度,结合几何关系求出平台距离地面的高度.
(2)根据水平位移和时间求出小球在A点的速度,结合牛顿第二定律求出轨道对小球的弹力,从而根据牛顿第三定律求出小球运动轨道的压力.
(3)根据最高点的压力大小,结合牛顿第二定律求出速度的大小.

解答 解:(1)人撒手以后,小球做平抛运动,则:y=$\frac{1}{2}$gt2=$\frac{1}{2}×10×0.64$m=3.2m
故平台离地高度为:h=y-2R=2m.
(2)小球平抛初速度大小为:$v=\frac{x}{t}=\frac{4.8}{0.8}m/s=6m/s$,
根据牛顿第二定律,小球在A点有:${F_N}+mg=m\frac{v^2}{R}$,
解得:${F}_{N}=m\frac{{v}^{2}}{R}-mg=0.6×\frac{36}{0.6}-6N=30N$.
由牛顿第三定律可知,球对轨道的压力FN′=FN=30N.
(3)依题换成管后,在最高点,有:$mg-{F_N}_2=m\frac{v^2}{r}$
可得:$v=\sqrt{\frac{{(mg-{F_N}_2)r}}{m}}=\sqrt{\frac{(0.6×10-3)×0.4}{0.6}}m/s=\sqrt{2}m/s$.
答:(1)平台距地面高度h为2m;
(2)小球运动在 A点时对轨道的压力为30N;
(3)小球在D点的速度为$\sqrt{2}$m/s.

点评 本题考查了平抛运动和圆周运动的综合运用,知道平抛运动在水平方向和竖直方向上的运动规律,以及圆周运动向心力的来源是解决本题的关键.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

12.如图所示,一等边三角形MNQ的边长为2L,P为MN边的中点.水平线MN以下是竖直向上的匀强电场,三角形MNQ内的区域I有垂直纸面向外的匀强磁场,磁感应强度大小为B0;三角形MNQ外、水平线MN以上的区域Ⅱ有方向垂直纸面向里的匀强磁场,磁感应强度大小也为B0,一带正电的粒子从P点正下方,距离P为L的O点由静止释放,通过电场后粒子以速度v0从P点沿垂直MN进人磁场区域I;再从NQ边沿垂直NQ边进人区域Ⅱ,最终粒子又回到O点,带电粒子的重力忽略不计.则:
(1)求该粒子的比荷$\frac{q}{m}$和匀强电场的场强大小E;
(2)求该粒子从O点运动再次回到O点的时间T;
(3)若区域Ⅰ内磁感应强度为3B0,区域Ⅱ内磁场的磁感应强度为1.5B0,则粒子再次回到O点过程通过的路程是多少?

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

13.如图所示,质量为m的物体在竖直向上的恒定外力F作用下竖直向上做匀加速直线运动,经过时间t,力F做的功为W,此时撤去恒力F,物体又经时间t回到了出发点,若以出发点所在水平面为重力势能的零势能面,重力加速度为g,不计空气阻力,则(  )
A.恒力F的大小为$\frac{4}{3}mg$
B.从物体开始运动到回到出发点的过程中,物体的机械能增加了W
C.回到出发点时重力的瞬间功率为2$\sqrt{m{g}^{2}W}$
D.撤去恒力F时,物体的动能和势能恰好相等

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

10.在“探究加速度与力、质量的关系”的实验中,教材中提供了参考案例一:如图所示,两个小车放在光滑水平板上,前段各系一条细绳,绳的另一端跨过定滑轮各挂一个小盘,盘中可放砝码.两个小车后端各系一条细线,用一个黑板擦把两条细线同时按在桌子上,使小车静止,抬起黑板擦,两小车同时开始运动,按下黑板擦,两小车同时停下来.用刻度尺测出两小车通过的位移之比就等于它们的加速度之比.
(1)上述实验中,作用在小车上的力是通过测量小盘和砝码的重力mg得到的,即F=mg,这样处理会有系统误差,为了减小系统误差,小盘和砝码的质量m与小车的质量M应满足的关系是m<<M;为了消除这个系统误差,有同学认为只要换一下研究对象,在探究加速度与合力关系时,将小盘中减掉的砝码放到小车上,合力依然是小盘和砝码的重力mg,系统误差就没有了,他的研究对象应该是小盘,砝码和小车;
(2)该参考案列采用的物理思想方法是BD.
A.等效法  B.控制变量法  C.极限法  D.转换法.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

17.如图所示,一左侧为四分之一圆形,右侧为直角梯形的等厚玻璃砖,圆形半径R=1m,直角梯形的高OP=1m,∠OMN=60°,一束平行蓝光(光束范围恰好在PQ之间)垂直射向该玻璃砖,经折射后在屏幕S上形成一个亮区.屏幕S至O的距离为OG=($\sqrt{2}$+1)m,试求:
(1)若左侧四分之一圆形玻璃砖对蓝色光的折射率为n1=$\sqrt{2}$,右侧直角梯形玻璃砖对蓝色光的折射率为n2=$\sqrt{3}$,请你求出屏幕S上形成亮区的长度.(结果可保留根号);
(2)若将题干中蓝光改为白光,在屏幕S上形成的亮区的边缘是什么颜色,试说明理由.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

7.如图所示,小物块位于半径为R的光滑半球顶端.若给小物块以水平初速度υ时,小物块对半球顶恰好无压力,则(  )
A.小物块立即离开半球面做平抛运动
B.小物块沿半球面下滑一定高度后才会离开半球面
C.小物块的初速度υ=$\sqrt{gR}$
D.小物块飞落到水平地面时水平位移为$\sqrt{2R}$

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

14.在高速公路的拐弯处,路面造得外高内低,即当车向右拐弯时,司机左侧的路面比右侧要高一些,路面与水平面夹角为θ,设拐弯路段是半径为R的圆弧,要使车速为v时,车轮与路面之间的横向(即垂直于前进方向)摩擦力等于零,tanθ应等于(  )
A.2$\frac{{v}^{2}}{Rg}$B.$\frac{{v}^{2}}{Rg}$C.$\frac{2{v}^{2}}{Rg}$D.$\frac{\sqrt{2}{v}^{2}}{Rg}$

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

11.一个质子和一个中子聚变结合成一个氘核,同时辐射一个γ光子.已知质子、中子、氘核的质量分别为m1、m2、m3,普朗克常量为h,真空中的光速为c.下列说法正确的是(  )
A.核反应方程是${\;}_{1}^{1}$H+${\;}_{0}^{1}$n→${\;}_{1}^{3}$H+γ
B.辐射出的γ光子的能量E=(m3-m1-m2)c2
C.聚变反应中的质量亏损△m=m1+m2-m3
D.γ光子的波长λ=$\frac{h}{({m}_{1}+{m}_{2}-{m}_{3}){c}^{2}}$

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

12.电磁波包含了γ射线、红外线、紫外线、无线电波等,则(  )
A.无线电波的波长比紫外线的短
B.红外线光子的能量比紫外线光子的能量弱
C.γ射线的频率比红外线的频率低
D.在真空中,红外线的速度比无线电波的速度快

查看答案和解析>>

同步练习册答案