精英家教网 > 高中物理 > 题目详情
8.如图所示,宽为L=2m、足够长的金属导轨MN和M’N’放在倾角为θ=30°的斜面上,在N和N’之间连有一个阻值为R=1.2Ω的电阻,在导轨上AA’处放置一根与导轨垂直、质量为m=0.8kg、电阻为r=0.4Ω的金属滑杆,导轨的电阻不计.用轻绳通过定滑轮将电动小车与滑杆的中点相连,绳与滑杆的连线平行于斜面,开始时小车位于滑轮的正下方水平面上的P处(小车可视为质点),滑轮离小车的高度H=4.0m.在导轨的NN’和OO’所围的区域存在一个磁感应强度B=1.0T、方向垂直于斜面向上的匀强磁场,此区域内滑杆和导轨间的动摩擦因数为μ=$\frac{\sqrt{3}}{4}$,此区域外导轨是光滑的.电动小车沿PS方向以v=1.0m/s的速度匀速前进时,滑杆经d=1m的位移由AA’滑到OO’位置.(g取10m/s2)求:

(1)请问滑杆AA’滑到OO’位置时的速度是多大?
(2)若滑杆滑到OO’位置时细绳中拉力为10.1N,滑杆通过OO’位置时的加速度?
(3)若滑杆运动到OO’位置时绳子突然断了,则从断绳到滑杆回到AA’位置过程中,电阻R上产生的热量Q为多少?(设导轨足够长,滑杆滑回到AA’时恰好做匀速直线运动.)

分析 (1)由速度公式求出金属棒通过OO′位置时的速度大小v;
(2)感应电动势为E=BLv,由欧姆定律求出电流,由安培力公式求出安培力,然后由牛顿第二定律求出加速度.
(3)由平衡条件求出滑杆的速度,由能量守恒定律求出产生的热量.

解答 解:(1)滑杆运动到OO'位置时,小车通过S点时的速度为v=1.0m/s,
设系绳与水平面的夹角为α,则
滑杆$\frac{H}{sinα}$-H=d,sinα=0.8,α=53°
此时向上的速度即绳端沿绳长方向的速度,代入数据得:v1=0.6m/s.
(2)滑杆运动到OO'位置产生感应电动势为:E=BLv1
产生感应电流为:I=$\frac{E}{R+r}$,
受到的安培力为:F=BIL=$\frac{{B}^{2}{L}^{2}{v}_{1}}{R+r}$,代入数据,得:F=1.5N.
滑杆通过OO'位置时所受摩擦力为:f=μmgcosθ=$\frac{\sqrt{3}}{4}$×0.8×10×$\frac{\sqrt{3}}{2}$=3N.
由F-mgsinθ-f-F=ma,
解得加速度:a=2m/s2
(3)设滑杆返回运动到AA'位置后做匀速运动的速度为v2
有:mgsinθ=μmgcosθ+$\frac{{B}^{2}{L}^{2}{v}_{2}}{R+r}$,
带入数据,可得:v2=0.4m/s   
由功能关系:Q=$\frac{1}{2}$mv12-$\frac{1}{2}$mv22+mgdsinθ-μmgdcosθ,
带入数据得:Q=1.08J
所以,由串联电路特点可得:QR=$\frac{R}{R+r}$•Q=$\frac{1.2}{1.2+0.4}$×1.08=0.81J.
答:(1)滑杆AA′滑到OO′位置时的速度是0.60m/s;
(2)若滑杆滑到OO′位置时细绳中拉力为10.1N,滑杆通过OO′位置时的加速度是2m/s2
(3)若滑杆运动到OO′位置时绳子突然断了,则从断绳到滑杆回到AA′位置过程中,电阻R上产生的热量Q为0.81J.

点评 本题是一道电磁感应与力学、电学相结合的综合体,考查了求加速度、电阻产生的热量,分析清楚滑杆的运动过程,应用运动的合成与分解、E=BLv、欧姆定律、安培力公式、牛顿第二定律、平衡条件、能量守恒定律即可正确解题;求R产生的热量时要注意,系统产生的总热量为R与r产生的热量之和.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

17.在“探究求合力的方法”的实验中,实验装置如图所示.关于实验时应注意的事项,其中正确的是(  )
A.拉橡皮条时,弹簧秤、橡皮条、细绳应贴近木板且与木板平面平行
B.与橡皮条相连的细绳越短,实验效果越好
C.拉力F1和F2的夹角越大越好
D.弹簧秤的拉力要适当大些

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

19.两根相距为L的足够长的金属直角导轨如图所示放置,它们各有一边在同一水平面内,另一边垂直于水平面.质量均为m的金属细杆ab、cd与导轨垂直接触形成闭合回路,杆与导轨之间的动摩擦因数均为μ,每根杆的电阻均为R,导轨电阻不计.整个装置处于磁感应强度大小为B,方向竖直向上的匀强磁场中.当ab杆在平行于水平导轨的拉力F作用下以速度v1沿水平方向导轨向右匀速运动时,cd杆正以速度v2(v1≠v2)沿竖直方向导轨向下匀速运动,重力加速度为g.则以下说法正确的是(  )
A.ab杆所受拉力F的大小为$\frac{μ{B}^{2}{L}^{2}{v}_{2}}{2R}$+μmg
B.ab杆所受拉力F的大小为$\frac{1+{μ}^{2}}{μ}$mg
C.cd杆下落高度为h的过程中,整个回路中电流产生的焦耳热为$\frac{2R{m}^{2}{g}^{2}h}{{μ}^{2}{B}^{2}{L}^{2}{v}_{2}}$
D.ab杆水平运动位移为s的过程中,整个回路中产生的总热量为Fs+$\frac{μ{B}^{2}{L}^{2}{v}_{2}s}{2R}$

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

16.如图所示,倾角为θ宽度为L、长为s的光滑倾斜导轨C1D1、C2D2.顶端接有可变电阻,连入电路的阻值为R0,s足够长,倾斜导轨置于垂直导轨平面斜向左上方的匀强磁场中,磁感应强度为B,C1A1B1、C2A2B2为绝缘轨道,由半径为R处于竖直平面内的光滑半圆环A1B1、A2B2和粗糙的水平轨道C1A1、C2A2组成,粗糙的水平轨道长为X,整个轨道对称.在导轨顶端垂直于导轨放一根质量为m、电阻不计的金属棒MN,使其从静止开始自由下滑,不考虑金属棒MN经过接点A、C处时机械能的损失,整个运动过程中金属棒始终保持水平,水平导轨与金属棒MN之间的动摩擦因数为?.则:
(1)金属棒MN在倾斜导轨CD上运动的过程中,第一次达到C处时速率为多少?
(2)金属棒MN在倾斜导轨CD上运动的过程中,电阻R0上产生的热量Q为多少?
(3)为了金属棒MN能到达光滑半圆环B点,可变电阻R0应满足什么条件?

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

3.如图所示,两电阻不计的足够长光滑平行金属导轨与水平面夹角为θ=30°,导轨间距为l=40cm,所在平面的正方形区域abcd内存在有界匀强磁场,磁感应强度大小为0.5T,方向垂直于轨道平面向上.如图所示,将甲、乙两阻值相同,质量均为m=0.01kg的相同金属杆放置在导轨上,甲金属杆处在磁场的上边界,甲、乙相距l.从静止释放两金属杆的同时,在甲金属杆上施加一个沿着导轨的外力F,使甲金属杆在运动过程中始终沿导轨向下做匀加速直线运动,且加速度大小a=5m/s2,乙金属杆进入磁场时恰好做匀速运动.(g=10m/s2
(1)求乙金属杆刚进入磁场瞬间,甲、乙之间的距离x;以及甲、乙的电阻R为多少?
(2)先判断F的方向,再写出甲在磁场运动过程中外力F随时间t的变化关系式.(从释放金属杆时开始计时)
(3)若从开始释放两杆到乙金属杆刚离开磁场的过程中,乙金属杆上共产生热量Q,试求此过程中外力F对甲金属杆所做的功.(用已知量字母Q、m、l、θ、g表示)

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

13.有一磁感强度B=0.1T的水平匀强磁场,垂直匀强磁场放置一很长的金属框架,框架上有一导体ab保持与框架边垂直、由静止开始下滑.已知ab长0.1m,质量为0.1g,电阻为0.1Ω,框架电阻不计,取g=10m/s2.求:
(1)导体ab下落的最大加速度和最大速度;
(2)导体ab在最大速度时产生的电功率.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

20.如图所示,质量为m、带电量为q的小球在光滑导轨上运动,半圆形滑环的半径为R,小球在A点时的初速为v0,方向和斜轨平行.整个装置放在方向竖直向下,强度为E的匀强电场中,斜轨的高为H,试问:
(1)小球到达B点时小球在B点对圆环的压力为多少?
(2)在H与R满足什么条件下,小球可以刚好通过半圆环最高点,这时小球的速度多大?

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

17.如图所示,光滑绝缘、相互垂直的固定挡板PO、OQ竖直放置于匀强电场E中,场强方向水平向左且垂直于挡板PO.图中 A、B两球(可视为质点)质量相同且带同种正电荷.当A球受竖直向下推力F作用时,A、B两球均紧靠挡板处于静止状态,这时两球之间的距离为L.若使小球A在推力F作用下沿挡板PO向O点移动一小段距离后,小球A与B重新处于静止状态.在此过程中(  )
A.OQ对B球的弹力将增大B.A球对B球作用的静电力将减小
C.墙壁PO对A球的弹力不变D.力F将减小

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

18.如图所示,一木块在垂直于倾斜天花板平面方向的推力F作用下处于静止状态,则下列判断正确的是(  )
A.木块可能受二个力作用
B.木块可能受三个力作用
C.木块一定受四个力作用
D.木块的合力会随推力F的增大而增大

查看答案和解析>>

同步练习册答案