6£®Èçͼ¼×Ëùʾ£¬Æ½ÐнðÊô°åAºÍB¼äµÄ¾àÀëΪd£¬ÏÖÔÚA¡¢B°åÉϼÓÉÏÈçͼÒÒËùʾµÄ·½²¨µçѹ£¬t=0ʱA°å±ÈB°åµÄµçÊƸߣ®µçѹµÄÕýÏòֵΪU0£¬·´ÏòֵҲΪU0£¬ÏÖÓÐÖÊÁ¿ÎªmµçÁ¿Îª+qµÄÁ£×Ó×é³ÉµÄÁ£×ÓÊø£¬´ÓABµÄÖеãOÑؽðÊô°åÖÐÖáÏßOO¡äÒÔËÙ¶Èv0=$\frac{{q{U_0}T}}{3md}$²»¶ÏÉäÈ룬ËùÓÐÁ£×ÓÔÚAB¼äµÄ·ÉÐÐʱ¼ä¾ùΪT£¬²»¼ÆÖØÁ¦Ó°Ï죮ÊÔÇó£º
£¨1£©t=0ʱÉäÈëµÄ´øµçÁ£×ÓÔÚÁ½°å¼äµÄƫת¾àÀ룻
£¨2£©Á£×ÓÉä³öµç³¡Ê±µÄËٶȣ»
£¨3£©ÈôҪʹÉä³öµç³¡µÄÁ£×Ó¾­Ä³Ò»´¹Ö±Ö½ÃæµÄÔ²ÐÎÓнçÔÈÇ¿´Å³¡Æ«×ªºó£¬¶¼ÄÜ´ÓÔ²ÐÎÓнç´Å³¡±ß½çÉϵÄͬһ¸öµãÉä³ö£¬´Ó¶øÄܱãÓÚÔÙÊÕ¼¯£¬Ôò´Å³¡ÇøÓòµÄ×îС°ë¾¶ºÍÏàÓ¦µÄ´Å¸ÐÇ¿¶ÈÊǶà´ó£¿

·ÖÎö £¨1£©¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉ£¬½áºÏÔ˶¯Ñ§¹«Ê½Çó³öt=0ʱÉäÈëµÄ´øµçÁ£×ÓÔÚÁ½°å¼äµÄƫת¾àÀ룻
£¨2£©Á£×ÓÔÚ´ò³öÁ£×ÓµÄËٶȶ¼ÊÇÏàͬµÄ£¬ÓÉËٶȺϳɷ¨Çó½â£»
£¨3£©ÒªÊ¹Æ½ÐÐÁ£×ÓÄܹ»½»ÓÚÔ²Ðδų¡ÇøÓò±ß½çÇÒÓÐ×îСÇøÓòʱ£¬´Å³¡Ö±¾¶×îСֵÓëÁ£×Ó¿í¶ÈÏàµÈ£¬¼´¿ÉµÃµ½´Å³¡ÇøÓòµÄ×îС°ë¾¶£®Á£×Ó½øÈëÔÈÇ¿´Å³¡ÖУ¬ÓÉÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¿ÉÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÏàÓ¦µÄ´Å¸ÐÇ¿¶È£®

½â´ð ½â£º£¨1£©µ±Á£×ÓÓÉt=0ʱ¿Ì½øÈëµç³¡£¬ÏòÏÂƫת¾àÀëΪ£º
${s_1}=\frac{1}{2}a{£¨\frac{2T}{3}£©^2}+a£¨{\frac{2T}{3}}£©•\frac{T}{3}-\frac{1}{2}a{£¨\frac{T}{3}£©^2}$$a=\frac{{q{U_0}}}{md}$
½âµÃ£º${s_1}=\frac{{7q{U_0}{T^2}}}{18md}$
£¨2£©´ò³öÁ£×ÓµÄËٶȶ¼ÊÇÏàͬµÄ£¬ÔÚÑص糡Ïß·½ÏòËٶȴóСΪ£º${v_y}=a•\frac{T}{3}$
ËùÒÔ´ò³öËٶȴóСΪ£º$v=\sqrt{v_0^2+v_y^2}$
½âµÃ£º$v=\frac{{\sqrt{2}q{U_0}T}}{3md}$
ÉèËٶȷ½ÏòÓëv0µÄ¼Ð½ÇΪ¦È£¬ÔòÓУº$tan¦È=\frac{{v}_{y}}{{v}_{0}}=1$£¬
½âµÃ£º¦È=45¡ã
£¨3£©µ±Á£×ÓÔÚt=nTʱ¿Ì½øÈëµç³¡£¬ÏòÏÂƫת¾àÀë×î´óΪ£º${s_1}=\frac{{7q{U_0}{T^2}}}{18md}$£¬
µ±Á£×ÓÓÉ$t=nT+\frac{2T}{3}$ʱ¿Ì½øÈëµç³¡£¬ÏòÉÏƫת¾àÀë×î´óΪ£º${s_2}=\frac{{q{U_0}{T^2}}}{18md}$£¬
ËùÒÔ£¬ÔÚ¾àÀëO¡äÖеãÏ·½$\frac{{7q{U_0}{T^2}}}{18md}$ÖÁÉÏ·½$\frac{{q{U_0}{T^2}}}{18md}$·¶Î§ÄÚÓÐÁ£×Ó´ò³ö£®
ËùÓÐÁ£×ÓÉä³öµç³¡Ê±µÄËٶȷ½Ïò±Ë´ËƽÐУ¬ÒªÊ¹Æ½ÐÐÁ£×ÓÄܹ»½»ÓÚÔ²Ðδų¡ÇøÓò±ß½çÇÒÓÐ×îСÇøÓòʱ£¬´Å³¡Ö±¾¶×îСֵÓëÁ£×Ó¿í¶ÈÏàµÈ£¬
Á£×Ó¿í¶ÈΪ£ºD=£¨s1+s2£©cos45¡ã
¹Ê´Å³¡ÇøÓòµÄ×îС°ë¾¶Îª£º$r=\frac{D}{2}=\frac{{\sqrt{2}q{U_0}{T^2}}}{9md}$
Á£×ÓÔڴų¡ÖÐ×÷Ô²ÖÜÔ˶¯£¬ÓУº$qvB=m\frac{v^2}{r}$
½âµÃ£º$B=\frac{3m}{qT}$£®
´ð£º£¨1£©t=0ʱÉäÈëµÄ´øµçÁ£×ÓÔÚÁ½°å¼äµÄƫת¾àÀëΪ$\frac{7q{U}_{0}{T}^{2}}{18md}$£»
£¨2£©Á£×ÓÉä³öµç³¡Ê±µÄËÙ¶ÈΪ$\frac{\sqrt{2}q{U}_{0}T}{3md}$£»
£¨3£©´Å³¡ÇøÓòµÄ×îС°ë¾¶Îª$\frac{\sqrt{2}q{U}_{0}{T}^{2}}{9md}$£¬ÏàÓ¦µÄ´Å¸ÐÇ¿¶ÈÊÇ$\frac{3m}{qT}$£®

µãÆÀ ±¾Ì⿼²éÁË´øµçÁ£×ÓÔڵ糡ºÍ´Å³¡ÖеÄÔ˶¯£¬ÕÆÎÕ´¦ÀíÀàƽÅ×Ô˶¯µÄ·½·¨£¬ÒÔ¼°ÖªµÀÁ£×Ó½øÈë´Å³¡ºó×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÔËÓü¸ºÎ֪ʶÇó³ö°ë¾¶£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®A¡¢B¡¢CÈý¸öÎïÌåͬʱͬµØ³ö·¢×öÖ±ÏßÔ˶¯£¬ËüÃǵÄx-tͼÏóÈçͼËùʾ£¬ÔÚ20sµÄʱ¼äÄÚ£¬ËüÃǵÄ·³Ì¹ØϵÊÇAµÄ·³Ì×î´ó£¬BCÏàµÈ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

17£®¹ØÓÚÔ˶¯µÄºÏ³ÉºÍ·Ö½â£¬ÏÂÊö˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ºÏÔ˶¯µÄËٶȴóСµÈÓÚ·ÖÔ˶¯µÄËٶȴóС֮ºÍ
B£®Á½¸öÔÈËÙÖ±ÏßÔ˶¯µÄºÏÔ˶¯Ò»¶¨Ò²ÊÇÔÈËÙÖ±ÏßÔË
C£®»¥³É½Ç¶ÈµÄÒ»¸öÔÈËÙÖ±ÏßÔ˶¯ºÍÒ»¸öÔȱäËÙÖ±ÏßÔ˶¯µÄºÏÔ˶¯£¬Ò»¶¨ÊÇÇúÏßÔ˶¯
D£®ÈôºÏÔ˶¯ÊÇÇúÏßÔ˶¯£¬ÔòÆä·ÖÔ˶¯ÖÐÖÁÉÙÓÐÒ»¸öÊÇÇúÏßÔ˶¯

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÏÂÁйØÓÚµç´Å¸ÐÓ¦ÏÖÏóÖУ¬µç·ÖвúÉúµÄ¸ÐÓ¦µç¶¯ÊƵĴóСµÄ˵·¨ÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®´ÅͨÁ¿Ô½´ó£¬¸ÐÓ¦µç¶¯ÊÆÔ½¿ÉÄÜԽС
B£®´ÅͨÁ¿±ä»¯Ô½¶à£¬¸ÐÓ¦µç¶¯ÊÆÔ½´ó
C£®´ÅͨÁ¿±ä»¯Ô½¿ì£¬¸ÐÓ¦µç¶¯ÊÆÔ½´ó
D£®´ÅͨÁ¿ÎªÁãʱ£¬¸ÐÓ¦µç¶¯ÊÆÒ»¶¨ÎªÁã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®´Óijһ¸ß¶ÈƽÅ×Ò»ÎïÌ壬µ±Å׳ö2sºóËüµÄËٶȷ½ÏòÓëˮƽ·½Ïò³É45¡ã½Ç£¬ÂäµØʱËٶȷ½ÏòÓëˮƽ³É60¡ã½Ç£®Å׳öʱµÄËÙ¶È20m/s£¬ÂäµØʱµÄËÙ¶È40m/s£¬Å׳öµã¾àµØÃæµÄ¸ß¶È60m£¨gÈ¡10m/s2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®¹ØÓÚ»¥³É½Ç¶ÈµÄÒ»¸öÔÈËÙÖ±ÏßÔ˶¯ºÍÒ»¸öÔȱäËÙÖ±ÏßÔ˶¯µÄºÏÔ˶¯ÕýÈ·µÄ˵·¨ÊÇ£¨¡¡¡¡£©
A£®Ò»¶¨ÊÇÖ±ÏßÔ˶¯B£®Ò»¶¨ÊÇÇúÏßÔ˶¯
C£®¿ÉÒÔÊÇÖ±ÏßÒ²¿ÉÄÜÊÇÇúÏßÔ˶¯D£®ÒÔÉÏ˵·¨¶¼²»ÕýÈ·

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÓÃÉþµõ×ÅÖÊÁ¿ÎªmµÄСÇòÒÔ¼ÓËÙ¶Èa¼ÓËÙÉÏÉýÁËs£¬ÔòϸÏßÀ­Á¦×ö¹¦Îªm£¨a+g£©s£¬ÖØÁ¦×ö¹¦Îª-mgh£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

15£®¹ØÓÚÔ˶¯ºÍÁ¦µÄ¹Øϵ£¬ÏÂÁÐ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®Á¦ÊÇÔ˶¯×´Ì¬¸Ä±äµÄÔ­Òò
B£®Á¦ÊÇʹÎïÌåλÒƲ»¶ÏÔö´óµÄÔ­Òò
C£®×öÔÈËÙÖ±ÏßÔ˶¯µÄÎïÌå±ØÐëÊܵ½Æ½ºâÁ¦µÄ×÷ÓÃ
D£®Ö»ÒªÎïÌåÔ˶¯¹ì¼£·¢ÉúÍäÇú£¬±ØÈ»Êܵ½Á¦µÄ×÷ÓÃ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®ÖÊÁ¿ÎªmµÄ·É»úÒÔˮƽËÙ¶Èv0·ÉÀëÅܵÀºóÖð½¥ÉÏÉý£¬Èô·É»úÔڴ˹ý³ÌÖÐˮƽËٶȱ£³Ö²»±ä£¬Í¬Ê±Êܵ½ÖØÁ¦ºÍÊúÖ±ÏòÉϵĺ㶨ÉýÁ¦£¨¸ÃÉýÁ¦ÓÉÆäËüÁ¦µÄºÏÁ¦Ìṩ£¬²»º¬ÖØÁ¦£©£®½ñ²âµÃµ±·É»úÔÚˮƽ·½ÏòµÄλÒÆΪLʱ£¬ËüÉÏÉýµÄ¸ß¶ÈΪH£¬Çó£º
£¨1£©·É»úˮƽλÒÆΪLʱ·É»úµÄËÙ¶È
£¨2£©·É»úÊܵ½µÄÉýÁ¦´óС£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸