·ÖÎö ½¨Á¢×ø±êϵ£¬ÔËÓÃÕý½»·Ö½â£¬·Ö±ð¶Ôx·½ÏòºÍy·½ÏòÁжþάÔ˶¯µÄ¶¯Á¿Êغ㶨ÂÉ
½â´ð ½â£ºÒÔµÚ¶þ¸ö¦Ð½é×ӵķÉÐз½ÏòΪxÖᣬÒÔʼþƽÃæΪx-yƽÃ棬ÉèË¥±äÇ°¦Ø½é×ÓºÍË¥±äºóÈý¸ö¦Ð½é×ӵĶ¯Á¿´óС·Ö±ðΪP¦Ø¡¢P1¡¢P2ºÍP3£¬Ë¥±äÇ°ºóÁ£×ÓÔÚxºÍy·½ÏòµÄ×ܶ¯Á¿·Ö±ðÊغã
P¦Øcos¦Õ=P1cos¦È1+P2+P3cos¦È2 ¢Ù
-P¦Øsin¦Õ=-P1sin¦È1+P3sin¦È2 ¢Ú
Ë¥±äÇ°ºóÁ£×Ó×ÜÄÜÁ¿Êغã
m¦Øc2+T¦Ø=£¨mc2+T1£©+£¨mc2+T2£©+£¨mc2+T3£© ¢Û
ʽÖÐ×ó¶ËºÍÓÒ¶ËÈý¸öÔ²À¨»¡ËùʾµÄÁ¿·Ö±ðÊÇË¥±äÇ°¦Ø½é×ÓºÍË¥±äºóÈý¸ö¦Ð½é×ÓµÄ×ÜÄÜ£¨¾²ÄÜÓ붯ÄÜÖ®ºÍ£©£®Ë¥±äÇ°¦Ø½é×ÓºÍˤºóÈý¸ö¦Ð½é×ÓµÄ×ÜÄÜ¿ÉÓÉÆ䶯Á¿ºÍ¾²Ö¹ÖÊÁ¿±íʾ³öÀ´
T¦Ø=$\frac{{P}_{¦Ø}^{2}}{2{m}_{¦Ø}}$ ¢Ü
T1=$\frac{{P}_{1}^{2}}{2{m}_{\;}}$ ¢Ý
T2=$\frac{{P}_{2}^{2}}{2{m}_{\;}}$ ¢Þ
T3=$\frac{{P}_{3}^{2}}{2{m}_{\;}}$ ¢ß
·Ö±ðÓɢݢޢßʽµÃ
P1=$\sqrt{2{mT}_{1}}$ ¢à
P2=$\sqrt{2{mT}_{2}}$ ¢á
P3=$\sqrt{2{mT}_{3}}$ ¢â
ÓÉ¢Ù¢Ú¢à¢á¢âʽµÃ
¦Õ=arctan$\frac{\sqrt{{T}_{1}}sin{¦È}_{1}-\sqrt{{T}_{3}}sin{¦È}_{2}}{\sqrt{{T}_{1}}cos{¦È}_{1}+\sqrt{{T}_{2}}+\sqrt{{T}_{3}}cos{¦È}_{2}}$⑪
P¦Ø=2m£¨T1+T2+T3£©+4m[$\sqrt{{T}_{1}{T}_{3}}$cos£¨¦È1+¦È2£©+$\sqrt{{T}_{1}{T}_{2}}$cos¦È1+$\sqrt{{T}_{2}{T}_{3}}$cos¦È2]⑫
ÓÉ¢Û¢Ü⑫ʽµÃ
2c2${m}_{¦Ø}^{2}$-2£¨3mc2+T1+T2+T3£©m¦Ø+2m£¨T1+T2+T3£©+4m[$\sqrt{{T}_{1}{T}_{3}}$cos£¨¦È1+¦È2£©+$\sqrt{{T}_{1}{T}_{2}}$cos¦È1+$\sqrt{{T}_{2}{T}_{3}}$cos¦È2]=0⑬
Æä½âΪm¦Ø=$\frac{3}{2}$m+$\frac{1}{2{c}^{2}}$£¨T1+T2+T3£©+$\sqrt{[\frac{3}{2}m+\frac{1}{2{c}^{2}}£¨{T}_{1}+{T}_{2}+{T}_{3}£©]^{2}-\frac{{P}_{¦Ø}^{2}}{2{c}^{2}}}$⑭ʽÖУ¬${P}_{¦Ø}^{2}$ÓÉ⑫ʽ¸ø³ö£®
ÁíÒ»½âm¦Ø¡«$\frac{{P}_{¦Ø}}{c}$£¬Óë·ÇÏà¶ÔÂÛ½üËÆÌõ¼þm¦Øc2£¼£¼P¦Øc ì¶Ü£¬ÉáÈ¥£®
´ð£º¦Ø½é×ÓÔÚË¥±äÇ°µÄ˲¼äµÄ·ÉÐз½ÏòÓëË¥±äºóµÄµÚ¶þ¸ö½é×ӵķÉÐз½ÏòµÄ¼Ð½Ç¦ÕΪarctan$\frac{\sqrt{{T}_{1}}sin{¦È}_{1}-\sqrt{{T}_{3}}sin{¦È}_{2}}{\sqrt{{T}_{1}}cos{¦È}_{1}+\sqrt{{T}_{2}}+\sqrt{{T}_{3}}cos{¦È}_{2}}$£»
¦Ø½é×ӵľ²Ö¹ÖÊÁ¿Îª$\frac{3}{2}$m+$\frac{1}{2{c}^{2}}$£¨T1+T2+T3£©+$\sqrt{[\frac{3}{2}m+\frac{1}{2{c}^{2}}£¨{T}_{1}+{T}_{2}+{T}_{3}£©]^{2}-\frac{{P}_{¦Ø}^{2}}{2{c}^{2}}}$£¨ÆäÖÐ${P}_{¦Ø}^{2}$ÓÉ⑫ʽ¸ø³ö£©£®
µãÆÀ ±¾Ì⿼²é¶þάÔ˶¯µÄ¶¯Á¿Êغ㶨ÂÉ£¬ÒªÔËÓÃÕý½»·Ö½â£¬·Ö±ðÔÚx·½ÏòºÍy·½ÏòÁж¯Á¿Êغ㣬³ý´ËÖ®Í⻹ҪÇó´ó¼ÒÕÆÎÕÖÊÄÜ·½³ÌµÄÔËÓᢶ¯Á¿ºÍ¶¯ÄÜÖ®¼äµÄ»»ËãÒÔ¼°·´Èý½Çº¯ÊýµÄʹÓã®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ÊúÖ±ÏòÏ | B£® | ÑØбÃæÏòÏ | C£® | ÑØбÃæÏòÉÏ | D£® | ´¹Ö±ÓÚбÃæÏòÏ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | t1¡«t2ʱ¿ÌÉý½µ»úÒ»¶¨ÔÚ¼ÓËÙϽµ | |
B£® | t1¡«t2ʱ¿ÌÉý½µ»úÒ»¶¨ÔÚ¼ÓËÙÉÏÉý | |
C£® | t2¡«t3ʱ¼äÄÚÉý½µ»úÒ»¶¨´¦ÓÚÔÈËÙÔ˶¯×´Ì¬ | |
D£® | t2¡«t3ʱ¼äÄÚÉý½µ»ú¿ÉÄÜ´¦ÓÚ¾²Ö¹×´Ì¬ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | ¶¼²»±ä | B£® | ¼×²»±ä£¬ÒÒ¼õÉÙ | C£® | ¼×²»±ä£¬ÒÒÔö´ó | D£® | ¼×¼õÉÙ£¬ÒÒ²»±ä |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÊµÑéÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¼ÆËãÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | Îï¿éBÊܵ½AµÄ¾²Ä¦²ÁÁ¦ÑØбÃæÏòÉÏ | B£® | Îï¿éB¸øAµÄ¾²Ä¦²ÁÁ¦ÑØбÃæÏòÉÏ | ||
C£® | Îï¿éAËùÊܵ½µÄ¾²Ä¦²ÁÁ¦´óСµÈÓÚF | D£® | Îï¿éAËùÊܵ½µÄ¾²Ä¦²ÁÁ¦´óССÓÚF |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com