精英家教网 > 高中物理 > 题目详情
20.某同学利用如图1所示装置研究外力与加速度的关系.将力传感器安装在置于水平轨道的小车上,通过细绳绕过定滑轮悬挂钩码,小车与轨道及滑轮间的摩擦可忽略不计.开始实验后,依次按照如下步骤操作:
①同时打开力传感器和速度传感器;
②释放小车;
③关闭传感器,根据F-t,v-t图象记录下绳子拉力F和小车加速度a.
④重复上述步骤.

(1)某次释放小车后得到的F-t,v-t图象如图2所示.根据图象,此次操作应记录下的外力F大小为0.79N,对应的加速度a为1.8m/s2.(保留2位有效数字)
(2)利用上述器材和过程得到的多组数据作出小车的加速度a随F变化的图象(a-F图象),如图3所示.若图线斜率为k,则安装了力传感器的小车的质量为$\frac{1}{k}$.

分析 (1)了解该实验装置,知道实验过程中小车的运动情况.根据F-t,v-t图象求出F大小和a的大小,
(2)根据a=$\frac{F}{m}$可知a-F图象知道理论上直线斜率应等于小车质量的倒数

解答 解:(1)根据v-t图象得到0.8s前小车是静止的,0.8s后小车做匀加速运动,所以此次操作应记录下的外力F大小为:F=0.785N=0.79N,
根据v-t图象的斜率求出加速度:a=$\frac{△v}{△t}=\frac{1.84}{1.80-0.80}$=1.8m/s2
(2)根据a=$\frac{F}{m}$可知a-F图象知道理论上直线斜率应等于小车质量的倒数,则小车的质量为m=$\frac{1}{k}$.
故答案为:(1)0.79,1.8;(2)$\frac{1}{k}$

点评 解决实验问题首先要掌握该实验原理,了解实验的操作步骤和数据处理以及注意事项.
通过作图法研究两个变量之间的关系是物理里常用的一种手段,只有直线图形可以清楚地说明两变量之间的关系

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

10.如图甲所示,长度为l,垂直于纸面的两平行板CD、MN间存在匀强磁场,板间距离为板长的两倍,平行板右侧有一水平方向的匀强电场.t=0时刻,一质量为m、带电量为+q的粒子(不计重力),以初速度v0由MN板左端靠近板面的位置,沿垂直于磁场且平行于板面的方向射入磁场区,以垂直于DN边的方向进入电场区域,之后又回到磁场中,最后从平行板左端靠近板面的位置离开磁场,速度方向与初速度方向相反,上述仅l、m、q、v0为已知量.

(1)若粒子在TB时刻进入电场,求B0的最大值;
(2)若粒子在TB时刻进入电场,且B0取最大值,求电场强度E及粒子在电场中向右运动的最大距离;
(3)若B0=$\frac{m{v}_{0}}{2ql}$,求TB满足的条件.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

11.自由式滑雪空中技巧是一项有极大观赏性的运动,其场地由①出发区、②助滑坡、③过渡区、④高度h=4m的跳台组成.其中过渡区的CDE部分是半径为R=4m圆弧,D是最低点,∠DOE=60°,如图所示.比赛时运动员由A点静止出发进入助滑区,经过渡区后,沿跳台的斜坡匀减速上滑,至跳台的F处飞出表演空中动作.运动员要成功完成空中动作,必须在助滑区用滑雪杆助滑,使离开F点时速度在36km/h到48km/h之间.不计所有阻力,已知$\overline{AB}=2\overline{EF}$,取g=10m/s2
(1)一次,某总质量为60kg的运动员进行试滑,他从A点滑下后不用滑雪杆助滑,结果F点飞出后无法完成空中动作.教练测得他在②、④两段运动时间之比t1:t2=3:1,求他在②、④两段运动的平均速度之比和加速度之比.
(2)这次试滑,他通过D点时受到的支持力多大?
(3)试求为了能成功完成空中动作,助滑过程中他至少需要消耗多少体能?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

8.图甲所示是演示振动图象的沙摆实验装置,沙摆可视为摆长L=1.0m的单摆,其摆动可看作简谐运动.实验中,细沙从摆动着的漏斗底部均匀漏出,用手沿与摆动方向垂直的方向匀速拉动纸板,漏在纸板上的细沙形成了图乙所示的粗细变化有规律的一条曲线.
(1)曲线之所以粗细不均匀,主要是因为沙摆摆动过程中速度(选填“位移”、“速度”或“加速度”)大小在变化;
(2)若图乙中AB间距离x=4.0m,当地重力加速度g=10m/s2,则纸板匀速运动的速度大小为1m/s.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.用图甲的装置研究小车沿斜面在不同材料表面运动的情况.图乙是某同学在实验中获得的一条纸带.打点计时器的电源频率为50Hz.

①图乙中A至N各点是打点计时器在纸带上连续打下的点,根据刻度尺上的数据可以判断,小车在A、E间(板面)做匀速直线运动,在F、N间(布面)做匀减速直线运动,M点对应的小车速度为0.33m/s.(结果保留2位有效数字)
②若已知斜面的倾角为θ,小车的质量为m,在布面上运动时加速度的大小为a,重力加速度为g,则小车在布面上所受的阻力的表达式为m(a+gsinθ).

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

5.利用如图所示电路,测量一个电源(电动势约为9V,内阻不计)的电动势和一个电阻Rx(阻值约为2kΩ)的准确值.实验室除了待测电源、导线和开关外,还有以下一些器材可供选择:
A.电流表A1(量程为0~0.6A,内阻RA1=1Ω)
B.灵敏电流表A2(量程为0~3mA,内阻RA2=800Ω)
C.灵敏电流表A3(量程为0~300μA,内阻未知)
D.电阻箱R1(最大阻值99.99Ω)
E.电阻箱R2(最大阻值9999.9Ω)
F.定值电阻R0(阻值1kΩ)
(1)实验中应选择的电流表是B,电阻箱是E(填器材前的字母代号).
(2)将电阻箱阻值调到适当值,闭合开关S,多次调节电阻箱,记下电流表的示数I和电阻箱相应的阻值R,以$\frac{1}{I}$为纵坐标,$\frac{1}{R}$为横坐标,作出$\frac{1}{I}-\frac{1}{R}$图线(用直线拟合);用E表示电源的电动势,则$\frac{1}{I}$与$\frac{1}{R}$的关系式为$\frac{1}{I}=\frac{{({R_0}+{R_{A2}}){R_x}}}{E}•\frac{1}{R}+\frac{{{R_0}+{R_{A2}}+{R_x}}}{E}$;(用题目中的符号表示).
(3)求出直线的斜率k和纵轴上的截距b,则E=$\frac{{{{({R_0}+{R_{A2}})}^2}}}{{b({R_0}+{R_{A2}})-k}}$,Rx=$\frac{{k({R_0}+{R_{A2}})}}{{b({R_0}+{R_{A2}})-k}}$(结果用k、b和题目中的符号表示).

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

12.如图为理想变压器原线圈所接交流电压的波形.原、副线圈匝数比n1:n2=10:1,串联在副线圈电路中电流表的示数为10A,下列说法正确的是(  )
A.变压器原线圈中的电流为1AB.变压器的输出功率为311W
C.变压器输出端电压最大值为31.1VD.变压器输出端交流电的频率为50Hz

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

9.一活塞将一定质量的理想气体封闭在汽缸内,初始时气体体积为3.0×10-3m3.用DIS实验系统测得此时气体的温度和压强分别为300K和1.0×105Pa.推动活塞压缩气体,稳定后测得气体的温度和压强分别为320K和1.6×105Pa.
①求此时气体的体积;
②保持温度不变,缓慢改变作用在活塞上的力,使气体压强变为0.8×105Pa,求此时气体的体积.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

10.根据伏安法,由10V电源、0〜15V电压表、0〜10mA电流表等器材,连接成测量较大阻值电阻的电路.由于电表内阻的影响会造成测量误差,为了避免此误差,现在原有器材之外再提供一只高精度的电阻箱和单刀双掷开关,某同学设计出了按图甲电路来测量该未知电阻的实验方案.

(1)请按图甲电路,将图乙中所给器材连接成实验电路图.
(2)请完成如下实验步骤:
①先把开关S拨向Rx,调节滑动变阻器,使电压表和电流表有一合适的读数,并记录两表的读数,U=8.12V,I=8.0mA,用伏安法初步估测电阻Rx的大小
②保持滑动变阻器动片位置不变,调节电阻箱,将电阻箱阻值调到1000Ω左右,之后把开关S拨向电阻箱R,调整电阻箱的电阻值,使电压表、电流表的读数与步骤1中的读数一致.读得此时电阻箱的阻值R=1000Ω.
③该未知电阻阻值为1000Ω.
(3)利用测得的数据,还可以得到电流表(填电流或者电压)的内电阻等于15Ω

查看答案和解析>>

同步练习册答案