精英家教网 > 高中物理 > 题目详情
13.如图所示,通过水平绝缘传送带输送完全相同的正方形单匝铜线框,为了检测出个别未闭合的不合格线框,让线框随传送带通过一固定匀强磁场区域(磁场方向垂直于传送带平面向下),观察线框进入磁场后是否相对传送带滑动就能够检测出未闭合的不合格线框.已知磁场边界MN、PQ与传送带运动方向垂直,MN与PQ间的距离为d,磁场的磁感应强度为B.各线框质量均为m,电阻均为R,边长均为L(L<d);传送带以恒定速度v0向右运动,线框与传送带间的动摩擦因数为μ,重力加速度为g.线框在进入磁场前与传送带的速度相同,且右侧边平行于MN进入磁场,当闭合线框的右侧边经过边界PQ时又恰好与传送带的速度相同.设传送带足够长,且在传送带上始终保持右侧边平行于磁场边界.对于闭合线框,求:
(1)线框的右侧边刚进入磁场时所受安培力的大小;
(2)线框在进入磁场的过程中运动加速度的最大值以及速度的最小值;
(3)从线框右侧边刚进入磁场到穿出磁场后又相对传送带静止的过程中,传送带对该闭合铜线框做的功.

分析 (1)根据法拉第电磁感应定律求得,闭合铜线框右侧边刚进入磁场时产生的电动势,根据欧姆定律求得电流,然后根据安培力的公式根据求得安培力;
(2)线框以速度v0进入磁场,在进入磁场的过程中,受安培力而减速运动;进入磁场后,在摩擦力作用下加速运动,当其右侧边到达PQ时速度又恰好等于v0.因此,线框在刚进入磁场时,所受安培力最大,加速度最大,设为am;线框全部进入磁场的瞬间速度最小.根据牛顿第二定律与动能定理即可求得结果;
(3)线框从右侧边进入磁场到运动至磁场边界PQ的过程中线框受摩擦力,闭合线框出磁场与进入磁场的受力情况相同,则完全出磁场的瞬间速度为v,摩擦力做的功等于摩擦力与相对位移的乘积.

解答 解:(1)闭合铜线框右侧边刚进入磁场时产生的电动势:E=BLv0
产生的电流:I=$\frac{E}{R}$,
右侧边所受安培力:F=BIL=$\frac{{B}^{2}{L}^{2}{v}_{0}}{R}$;
(2)线框以速度v0进入磁场,在进入磁场的过程中,受安培力而减速运动;
进入磁场后,在摩擦力作用下加速运动,当其右侧边到达PQ时速度又恰好等于v0
因此,线框在刚进入磁场时,所受安培力最大,加速度最大,设为am
线框全部进入磁场的瞬间速度最小,设此时线框的速度为v.
线框刚进入磁场时,根据牛顿第二定律有F-μmg=mam
解得:am=$\frac{{B}^{2}{L}^{2}{v}_{0}}{mR}$-μg,
在线框完全进入磁场又加速运动到达边界PQ的过程中,根据动能定理有:
μmg(d-L)=$\frac{1}{2}$mv02-$\frac{1}{2}$mv2
解得:v=$\sqrt{{v}_{0}^{2}-2μg(d-L)}$;
(3)线框从右侧边进入磁场到运动至磁场边界PQ的过程中线框受摩擦力:f=μmg
由功的公式:Wf1=fd,解得:Wf1=μmgd,
闭合线框出磁场与进入磁场的受力情况相同,则完全出磁场的瞬间速度为v;
在线框完全出磁场后到加速至与传送带速度相同的过程中,设其位移x
由动能定理有:μmgx=$\frac{1}{2}$mv02-$\frac{1}{2}$mv2
解得:x=d-L,
闭合线框在右侧边出磁场到与传送带共速的过程中位移:x'=x+L=d,
在此过程中摩擦力做功:Wf2=μmgd,
因此,闭合铜线框从刚进入磁场到穿出磁场后又相对传送带静止的过程中,
传送带对闭合铜线框做的功:W=Wf1+Wf2=2μmgd;
答:(1)线框的右侧边刚进入磁场时所受安培力的大小为$\frac{{B}^{2}{L}^{2}{v}_{0}}{R}$;
(2)线框在进入磁场的过程中运动加速度的最大值为$\frac{{B}^{2}{L}^{2}{v}_{0}}{mR}$-μg,速度的最小值为$\sqrt{{v}_{0}^{2}-2μg(d-L)}$;
(3)从线框右侧边刚进入磁场到穿出磁场后又相对传送带静止的过程中,传送带对该闭合铜线框做的功为2μmgd.

点评 本题是电磁感应与力学相结合的一道综合题,分析清楚运动过程是正确解题的前提与关键,分析清楚运动过程、应用安培力公式、牛顿第二定律、动能定理、功的计算公式即可正确解题.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

17.如右图所示,M、N是竖直放置的两平行金属板,分别带等量异种电荷,两极间产生一个水平向右的匀强电场,场强为E,一质量为m、电荷量为+q的微粒,以初速度v0竖直向上从两极正中间的A点射入匀强电场中,微粒垂直打到N极上的C点,已知AB=BC.不计空气阻力,则可知(  )
A.微粒打到C点时的速率与射入电场时的速率相等
B.微粒打到C点以前最小动能是初动能的一半
C.MN板间的电势差为$\frac{{m{v_o}^2}}{q}$
D.MN板间的电势差为$U=\frac{Ev_0^2}{2g}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

4.如图甲所示,表面绝缘、倾角θ=30°的斜面固定在水平地面上,斜面所在空间有一宽度D=0.40m的匀强磁场区域,其边界与斜面底边平行,磁场方向垂直斜面向上.一个质量m=0.10kg、总电阻R=0.25Ω的单匝矩形金属框abcd,放在斜面的底端,其中ab边与斜面底边重合,ab边长L=0.50m.从t=0时刻开始,线框在垂直cd边沿斜面向上大小恒定的拉力作用下,从静止开始运动,当线框的ab边离开磁场区域时撤去拉力,线框继续向上运动,线框向上运动过程中速度与时间的关系如图乙所示.已知线框在整个运动过程中始终未脱离斜面,且保持ab边与斜面底边平行,线框与斜面之间的动摩擦因数μ=$\frac{\sqrt{3}}{3}$,重力加速度g取10m/s2.求:
(1)线框受到的拉力F的大小;
(2)匀强磁场的磁感应强度B的大小;
(3)线框在斜面上运动的过程中产生的焦耳热Q.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

1.如图甲,MN、PQ两条平行的光滑金属轨道与水平面成θ=37°角固定,M、P之间接电阻箱R,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B=1T.质量为m的金属杆a b水平放置在轨道上,其接入电路的电阻值为r.现从静止释放杆a b,测得最大速度为vm.改变电阻箱的阻值R,得到vm与R的关系如图乙所示.已知轨距为L=2m,重力加速度g取l0m/s2,轨道足够长且电阻不计.求:
(1)R=0时回路中产生的最大电流的大小及方向;
(2)金属杆的质量m和阻值r;
(3)当R=4Ω时,若ab杆由静止释放至达到最大速度的过程中,电阻R产生的焦耳热为Q=8J,求该过程中ab杆下滑的距离x及通过电阻R的电量q.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

8.如图1所示,固定两根与水平面成θ=30°角的足够长光滑金属导轨平行放置,导轨间距为L=1m,导轨底端接有阻值为R=1Ω的电阻,导轨的电阻忽略不计.整个装置处于匀强磁场中,磁场方向垂直于导轨平面斜向上,磁感应强度B=1T.现有一质量为m=0.2kg、电阻不计的金属棒用细绳通过光滑滑轮与质量为M=0.5kg的物体相连,细绳与导轨平面平行.将金属棒与M由静止释放,棒沿导轨运动距离s=2m后开始做匀速运动.运动过程中,棒与导轨始终保持垂直接触.(取重力加速度g=10m/s2)求:
(1)金属棒匀速运动时的速度;
(2)棒从释放到开始匀速运动的过程中,电阻R上产生的焦耳热;
(3)若保持某一大小的磁感应强度B1不变,取不同质量M的物块拉动金属棒,测出金属棒相应的做匀速运动的v值,得到实验图象如图2所示,请根据图中的数据计算出此时的B1(结果可保留根号);
(4)改变磁感应强度的大小为B2,B2=2B1,其他条件不变,请画出相应的v-M图线,并请说明图线与M轴的交点的物理意义.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

18.有一水平放置的U形导体框处于磁感应强度B=0.4T的匀强磁场中,与磁场方向垂直.阻值为0.5Ω的导体棒ab以速度v=5m/s向右匀速运动,框架宽L=40cm,电阻不计.则导体棒ab中的感应电动势为0.8v 电流1.6 A,方向为b流向a(“a流向b”或“b流向a”).

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

5.如图甲所示,两根足够长的平行金属导轨MN、PQ相距为L,导轨平面与水平面夹角为α,金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为m,导轨处于匀强磁场中,磁场的方向垂直于导轨平面斜向上,磁感应强度大小为B,金属导轨的上端与开关S、定值电阻R1和电阻箱R2相连.不计一切摩擦,不计导轨、金属棒的电阻,重力加速度为g,现闭合开关S,将金属棒由静止释放.
(1)判断金属棒ab中电流的方向;
(2)若电阻箱R2接入电路的阻值为R2=2R1,当金属棒下降高度为h时,速度为v,求此过程中定值电阻R1上产生的焦耳热Q1
(3)当B=0.40T、L=0.50m、α=37°时,金属棒能达到的最大速度vm随电阻箱R2阻值的变化关系如图乙所示.取g=10m/s2,sin37°=0.60,cos37°=0.80.求定值电阻的阻值R1和金属棒的质量m.

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

2.如图所示,两根电阻不计的光滑平行金属导轨的倾角为θ,导轨下端接有电阻R,匀强磁场垂直于导轨平面向上.质量为m、电阻不计的金属棒ab在沿导轨平面且与棒垂直的恒力F作用下沿导轨匀速上滑,上升高度为h.在此过程中(  )
A.金属棒所受各力的合力所做的功为零
B.金属棒所受各力的合力所做的功等于mgh和电阻R上产生的焦耳热之和
C.恒力F与重力的合力所做的功等于棒克服安培力所做的功与电阻R上产生的焦耳热之和
D.恒力F与重力的合力所做的功等于电阻R上产生的焦耳热

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

3.如图所示,在直线电流附近有一根金属棒ab,当金属棒以b端为圆心,以ab为半径,在过导线的平面内按图示方向匀速旋转的过程中(  )
A.a端聚积电子B.b端聚积电子
C.金属棒内电场强度等于零D.ua<ub

查看答案和解析>>

同步练习册答案