精英家教网 > 高中物理 > 题目详情
4.如图所示,在光滑水平地面上有一固定的挡板,挡板左端固定一个轻弹簧.现有一质量M=3kg,长L=4m的小车(其中O为小车的中点,AO部分粗糙,OB部分光滑)一质量为m=1kg的小物块(可视为质点),放在车的最左端,车和小物块一起以v0=4m/s的速度在水平面上向右匀速运动,车撞到挡板后瞬间速度变为零,但未与挡板粘连.已知车OB部分的长度大于弹簧的自然长度,弹簧始终处于弹性限度内,小物块与车AO部分之间的动摩擦因数为μ=0.3,重力加速度g=10m/s2.求:
①小物块和弹簧相互作用的过程中,弹簧对小物块的冲量;
②小物块最终停在小车上的位置距A端多远.

分析 (1)根据牛顿第二定律求出小物块在AO段做匀减速直线运动的加速度大小,从而根据运动学公式求出小物块与B弹簧接触前的速度,根据能量守恒定律求出弹簧的最大弹性势能.小物块和弹簧相互作用的过程中,根据能量守恒定律求出小物块离开弹簧时的速度,根据动量定理求出弹簧对小物块的冲量.
(2)根据动量守恒定律求出小物块和小车保持相对静止时的速度,根据能量守恒定律求出小物块在小车上有摩擦部分的相对路程,从而求出小物块最终位置距离A点的距离.

解答 解:(1)对小物块,有ma=-μmg
根据运动学公式${v}^{2}-{{v}_{0}}^{2}=2a\frac{L}{2}$
由能量关系$\frac{1}{2}m{v}^{2}={E}_{p}$,
解得EP=2J.
设小物块离开弹簧时的速度为v1,有 $\frac{1}{2}m{{v}_{1}}^{2}={E}_{p}$.
对小物块,根据动量定理 I=-mv1-mv
由⑤⑥式并代入数据得I=-4kgm/s.
弹簧对小物块的冲量大小为4kgm/s,方向水平向左.
(2)小物块滑过O点和小车相互作用,由动量守恒mv1=(m+M)v2
由能量关系$μmgx=\frac{1}{2}m{{v}_{1}}^{2}-\frac{1}{2}(m+M){{v}_{2}}^{2}$
小物块最终停在小车上距A的距离${x}_{A}=\frac{L}{2}-x$
解得xA=1.5m.
答:(1)小物块和弹簧相互作用的过程中,弹簧对小物块的冲量大小为4kgm/s,方向水平向左.
(2)小物块最终停在小车上的位置距A端为1.5m

点评 本题综合考查了动量定理、动量守恒定律以及能量守恒定律,综合性较强,对学生的能力要求较高,关于这方面的问题,需加强训练.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

14.如图所示,在半径为R的水平圆台的中心轴线OO′上的一点A将一小球水平抛出,已知OA=h,抛出时初速度恰与圆台的一条半径OP平行,要使小球能击中P点,求:
(1)小球的初速度v0为多大?
(2)转台匀速转动的角速度ω等于多少?

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

15.如图甲所示,匀强磁场方向垂直纸面向里,磁场宽度为3L,正方形金属框边长为L,每边电阻均为$\frac{R}{4}$,金属框以速度υ的匀速直线穿过磁场区,其平面始终保持与磁感线方向垂直,当金属框cd边到达磁场左边缘时,匀强磁场磁感应强度大小按如图乙所示的规律变化.

(1)求金属框进入磁场阶段,通过回路的电荷量;
(2)在图丙i-t坐标平面上画出金属框穿过磁场区的过程中,金属框内感应电流i随时间t的变化图线(取逆时针方向为电流正方向);
(3)求金属框穿过磁场区的过程中cd边克服安培力做的功W.

查看答案和解析>>

科目:高中物理 来源: 题型:填空题

12.在“探究平抛运动规律”的实验中,可以描绘出小球平抛运动的轨迹,实验简要步骤如下:
A.让小球多次从斜槽上的同一位置滚下,在一张印有小方格的纸上记下小球碰到铅笔笔尖的一系列位置,如图中所示的a、b、c、d.
B.按图乙所示安装好器材,注意斜槽末端水平,记下平抛初位置O点和过O点的竖直线.
C.取下白纸以O为原点,以竖直线为y轴建立平面直角坐标系,用平滑曲线画出小球做平抛运动的轨迹.
(1)完成上述步骤,将正确的答案填在横线上.
(2)上述实验步骤的合理顺序是BAC.
(3)已知图中小方格的边长L=2.5cm,则小球平抛的初速度为v 0=1m/s,小球在b点的速率为1.25m/s.(取g=10m/s2

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

19.如图所示,Q点固定一带正电的点电荷,一个电子在库仑力作用下做以Q为焦点的椭圆运动.M、P、N为椭圆上的三点,P点是轨道上离Q最近的点.电子在从M经P到达N点的过程中,下列说法中不正确的是(  )
A.速率先增大后减小
B.加速度先减小后增大
C.电势能先减小后增大
D.在Q所产生的电场中,P点的电势高于 M点

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

9.如图甲所示,足够长的平行金属导轨MN、PQ倾斜放置.完全相同的两金属棒ab、cd分别垂直导轨放置,棒两端都与导轨始终有良好接触,已知两棒的电阻均为R,导轨间距为l且光滑,电阻不计,整个装置处在方向垂直于导轨平面向上,大小为B的匀强磁场中.棒ab在平行于导轨向上的力F作用下,沿导轨向上运动,从某时刻开始计时,两棒的速度时间图象如图乙所示,两图线平行,v0已知.则从计时开始(  )
A.通过棒cd的电流由d到c
B.通过棒cd的电流I=$\frac{Bl{v}_{0}}{R}$
C.力F=$\frac{{B}^{2}{l}^{2}{v}_{0}}{R}$
D.力F做的功等于回路中产生的焦耳热与两棒动能的增量之和

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.用螺旋测微器(千分尺)测小球直径时,示数如图所示,这时读出的数值是8.475mm.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

13.木星和地球环绕太阳的运动都可看成匀速圆周运动,已知木星的公转周期为12年,光从太阳到地球大约需要500秒,则光从太阳到木星需要的时间最接近的是(  )
A.2600秒B.3600秒C.4600秒D.5600秒

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

14.如图所示,一根长0.1m的细线,一端系着一个质量为0.18kg的小球,拉住线的另一端,使球在光滑的水平桌面上作匀速圆周运动,使小球的转速很缓慢地增加,当小球的转速增加到开始时转速的3倍时,细线断开,线断开前的瞬间线的拉力比开始时大40N,求:
(1)线断开前的瞬间,线的拉力大小;
(2)线断开的瞬间,小球运动的线速度;
(3)如果小球离开桌面时,速度方向与桌边的夹角为60°,桌面高出地面0.8m,求小球飞出后的落地点距桌边的水平距离.

查看答案和解析>>

同步练习册答案