精英家教网 > 高中物理 > 题目详情

(14分)

 

(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即k是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M

(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质M。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)

【解析】:(1)因行星绕太阳作匀速圆周运动,于是轨道的半长轴a即为轨道半径r。根据万有引力定律和牛顿第二定律有

                            ①

    于是有                           ②

即                                ③

(2)在月地系统中,设月球绕地球运动的轨道半径为R,周期为T,由②式可得

                                ④

解得     M=6×1024kg                         ⑤

M=5×1024kg也算对)

23.【题文】(16分)

     如图所示,在以坐标原点O为圆心、半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t0时间从P点射出。

(1)求电场强度的大小和方向。

(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经时间恰从半圆形区域的边界射出。求粒子运动加速度的大小。

(3)若仅撤去电场,带电粒子仍从O点射入,且速度为原来的4倍,求粒子在磁场中运动的时间。

 

(1)    (2)   (3) 

解析::(1)设带电粒子的质量为m,电荷量为q,初速度为v,电场强度为E。可判断出粒子受到的洛伦磁力沿x轴负方向,于是可知电场强度沿x轴正方向

且有    qE=qvB                      ①

又     R=vt0                        ②

则                           ③

(2)仅有电场时,带电粒子在匀强电场中作类平抛运动

在y方向位移                  ④

由②④式得                          ⑤

设在水平方向位移为x,因射出位置在半圆形区域边界上,于是

                  

又有                          ⑥

得                             ⑦

(3)仅有磁场时,入射速度,带电粒子在匀强磁场中作匀速圆周运动,设轨道半径为r,由牛顿第二定律有

                               ⑧

又                qE=ma                  ⑨

由⑦⑧⑨式得                      ⑩

由几何关系                      11

即                       12

带电粒子在磁场中运动周期

           

则带电粒子在磁场中运动时间

           

所以                             13

 

练习册系列答案
相关习题

科目:高中物理 来源: 题型:

(2011?安徽)(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即
a3T2
=k,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M
(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立.经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质量M.(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:

(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即
a3T2
=k,k是一个对所有行星都相同的常量.将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式.已知引力常量为G,太阳的质量为M
(2)一均匀球体以角速度ω绕自己的对称轴自转,若维持球体不被瓦解的唯一作用力是万有引力,则此球的最小密度是多少?

查看答案和解析>>

科目:高中物理 来源: 题型:

(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即k是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M

(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质M。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:

(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即,k是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M

(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质M。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)

 

查看答案和解析>>

科目:高中物理 来源:2011-2012学年江西省赣州市十一县(市)高一下学期期中联考物理试题(解析版) 题型:计算题

(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即,k是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M

(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质量M。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)

 

查看答案和解析>>

同步练习册答案