精英家教网 > 高中物理 > 题目详情

【题目】如图所示,在绝热圆柱形汽缸中用光滑绝热活塞密闭有一定质量的理想气体,在汽缸底部开有一小孔,与U形水银管相连,外界大气压为P0=75cmHg,缸内气体温度t0=27℃,稳定后两边水银面的高度差为△h=1.5cm,此时活塞离容器底部的高度为L=50cm(U形管内气体的体积忽略不计).已知柱形容器横截面S=0.01m2,取75cmHg压强为1.0×105Pa,重力加速度g=10m/s2

(i)求活塞的质量;

(ii)若容器内气体温度缓慢降至-3℃,求此时U形管两侧水银面的高度差△h′和活塞离容器底部的高度L′.

【答案】(i) (ii)

【解析】iA中气体压强PA=P0+Ph=76.5cmHg=1.02×105Pa

对活塞 PAS=P0S+mg

解得m=2kg

ii)由于气体等压变化,U形管两侧水银面的高度差不变h′=1.5cm

T1=300K,体积V1=50cm.s

T2=270K,体积V2= L′S

由:

解得:L′=45cm

型】解答
束】
31

【题目】下列说法正确的是_____

A.当一列声波从空气传入水中时,波长一定会变长

B.同一单摆在高山山脚的振动周期一定大于在该山山巅的振动周期

C.电磁波是横波,可以观察到其偏振现象

D.爱因斯坦狭义相对论认为在不同惯性参考系中光速不同

E.若测得来自某遥远星系上某些元素发出的光波波长比地球上这些元素静止时发出的光波波长长,则说明该星系正在远离我们而去

【答案】ACE

【解析】一列声波从空气中传入水中时,波速变大,根据,且f不变,则可知波长一定会变大,故A正确;同一地区,山脚下的重力加速度大于山顶的重力加速度,结合单摆的周期公式可知,同一单摆在高山山脚的振动周期一定小于在该山山巅的振动周期。故B错误;偏振是横波特有的现象,电磁波是横波,能观察到其偏振现象。故C正确;爱因斯坦狭义相对论指出:真空中的光速在不同的惯性参考系中都是相同的,故D错误;根据多普勒效应,可知,当自遥远星系上某些元素发出的光波波长比地球上这些元素静止时发光的波长长,由,得接收的频率变小,因此说明该星系正在远离我们而去,故E正确。

练习册系列答案
相关习题

科目:高中物理 来源: 题型:

【题目】某同学用伏安法测量一未知电阻的电阻值。

(1)该同学用电流表内接法和外接法分别测量了的伏安特性,并将得到的电流、电压数据描到U-I图上,由电流表外接法得到的图线是图甲中_______________(选填“a”或“b”);

(2)请用图甲中的数据,求出用电流表外接法时的测量值为___________(保留两位有效数字),其测量值与真实值相比是__________________(选填“偏大”或“偏小”);

(3)图乙是用电流表外接法已部分连接好的实物电路,请结合甲图信息补充完成实物接线 ________________

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,在以R为半径、O为圆心的圆形区域内存在磁场,直径PQ左侧区域存在一方向垂直于纸面向里、磁感应强度大小为B1的匀强磁场;PQ右侧区域存在一方向垂直于纸面向外、磁感应强度大小为B2的匀强磁场。现有一质量为m、电荷量为q的带负电粒子(不计重力)从C点沿垂直于PQ的方向射入磁场,并仅通过PQ—次,最终从D点离开磁场,离开磁场时粒子的运动方向仍垂直于PQ。图中CEDF均垂直于PQ,EF=R。已知OCPQ的夹角为θ1=30°,ODPQ的夹角为θ2,粒子在PQ左侧和右侧磁场区域中的运动时间分别为t1t2,则以下说法中正确的是

A. θ2=60° B. C. D.

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】将小砝码置于桌面上的薄纸板上,用水平向右的拉力将纸板迅速抽出,砝码的移动很小。这就是大家熟悉的惯性演示实验。若砝码和纸板的质量分别为Mm,各接触面间的动摩擦因数均为μ,砝码与纸板左端的距离和砝码与桌面右端的距离均为d,现用水平向右的恒力F拉动纸板,如图所示,则下列说法正确的是

A. 要使纸板相对砝码运动,F一定大于2μ(M+m)g

B. 纸板相对砝码运动时,纸板所受摩擦力的大小为μ(M+m)g

C. 若砝码与纸板分离时的速度不大于,砝码不会从桌面上掉下

D. F=2μ(M+2m)g时,砝码恰好到达桌面边缘

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,t=0时,位于原点O处的波源,从平衡位置(在x轴上)开始沿y轴正方向做周期T=0.2s,振幅A=4cm的简谐振动,该波产生的简谐横波沿x轴正方向传播,当平衡位置坐标为(9cm,0)的质点P刚开始振动时,波源刚好位于波谷,求:

(1)质点P在开始振动后的=1.05s内通过的路程是多少?

(2)该简谐横波的最大波速是多少?

(3)若该简谐横波的波速为v=12m/s,Q质点的平衡位置坐标为(12m,0)(在图中未画出)。请写出以t=1.05s时刻为新的计时起点的Q质点的振动方程。

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图甲所示,固定的光滑半圆轨道的直径PQ沿竖直方向,其半径R的大小可以连续调节,轨道上装有压力传感器,其位置N始终与圆心O等高。质量M=1kg、长度L=3m的小车静置在光滑水平地面上,小车上表面与P点等高,右端与P点的距离s=2m,一质量m=2kg的小滑块以v0=6m/s的水平初速度从左端滑上小车,小车与墙壁碰撞后小车立即停止运动。在R取不同值时,压力传感器读数F的关系如图乙所示,已知小滑块与小车表面的动摩擦因数μ=0.2,取重力加速度求:

(1)小滑块到达P点时的速度v1;

(2)图乙中ab的值;

(3)的情况下,小滑块落在小车上的位置与小车左端的最小距离xmin

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】(1)用如图所示的多用电表进行如下实验。

①将两表笔的金属部分分别与被测电阻的两根引线相接,发现指针偏转角度过大。为了得到比较准确的测量结果,请从下列选项中挑出合理的步骤,并按_________(填选项前的字母)的顺序进行操作,再将两表笔分别与待测电阻相接,进行测量。

A.K旋转到电阻挡“×lk”的位置

B.K旋转到电阻挡“×10”的位置

C.将两表笔短接,旋动部件T,对电表进行校准

②测量二极管的正向导通电阻时,红表笔应接二极管的_________(填“正极”、“负极”)

(2)用如图所示的装置可以验证动量守恒定律。

①实验中质量为m1的入射小球和质量为m2的被碰小球的质量关系是m1___________m2(选填“大于”、“等于”、“小于”)

②图中O点是小球抛出点在地面上的投影。实验时,先让入射小球m1多次从斜轨上S位置静止释放,找到其平均落地点的位置P,测量平抛射程OP.然后,把被碰小球m2静置于轨道的水平部分,再将入射小球m1从斜轨上S位置静止释放,与小球m2相碰,并多次重复本操作。接下来要完成的必要步骤是_________。(填选项前的字母)

A.用天平测量两个小球的质量m1、m2

B.测量小球m1开始释放的高度h

C.测量抛出点距地面的高度H

D.分别通过画最小的圆找到m1、m2相碰后平均落地点的位置M、N

E.测量平抛射程OM、ON

③若两球相碰前后的动量守恒,其表达式可表示为_________________(用②中测量的量表示);

④经过测定,m1=45.0g,m2=7.5g,小球落地的平均位置距O点的距离如图所示.若用长度代表速度,则两球碰撞前总动量之和为_________g·cm,两球碰撞后总动量之和为________g·cm.

⑤用如图装置也可以验证碰撞中的动量守恒,实验步骤与上述实验类似。图中D、E、F到抛出点B的距离分别为LD、LE、LF.若两球相碰前后的动量守恒,其表达式可表示为____.

A. m1LF=m1LD+m2LE

B. m1L2E=m1L2D+m2L2F

C. m1 =m1 +m2

D. LE=LF –LD

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】如图所示,用面积为S的活塞在气缸内封闭着一定质量的空气,活塞上放一砝码,活塞和砝码的总质量为m,现对气缸缓缓加热使气缸内的空气温度从T1高到T2,且空气柱的高度增加了Δl,已知加热时气体吸收的热量为Q,外界大气压强为p0,问:

①此过程中被封闭气体的内能变化了多少;

②被封闭空气初始状态的体积。

【答案】①-mgΔl-p0SΔl+Q②

【解析】

试题分析:①由受力分析和做功分析知,在气体缓缓膨胀过程中,活塞与砝码的压力对气体做负功,大气压力对气体做负功,根据热力学第一定律得

ΔU=W+Q=-mgΔl-p0SΔl+Q

②被封闭气体等压变化,据盖·吕萨克定律得 解得V1

考点:考查了理想气体状态方程的应用

【名师点睛】利用热力学第一定律判断气体的内能变化,判断的时候要注意做功W和热量Q的符号,对外做功和放热为负的,对气体做功和吸热为正的.气体做的是等压变化,根据盖-吕萨克定律计算即可

型】解答
束】
47

【题目】沿x轴正方向传播的一列简谐横波在某时刻的波形图如图所示,其波速为200 m/s,下列说法中正确的是________

A.图示时刻质点b的速度方向沿y轴负方向

B.图示时刻质点a的加速度为零

C.图示时刻质点a的速度为零

D.若此波遇到另一简谐波并发生稳定干涉现象,则该波所遇到的波的频率为50 Hz

E.若该波发生明显的衍射现象,该波所遇到的障碍物或孔的尺寸一定比4 m大得多

查看答案和解析>>

科目:高中物理 来源: 题型:

【题目】201211月,15”舰载机在辽宁号航空母舰上着舰成功,它的阻拦技术原理是,飞机着舰时利用阻拦索的作用力使它快速停止。随着电磁技术的日趋成熟,新一代航母已准备采用全新的电磁阻拦技术,它的阻拦技术原理是,飞机着舰时利用电磁作用力使它快速停止。为研究问题的方便,我们将其简化为如图所示的模型。在磁感应强度为B、方向如图所示的匀强磁场中,两根平行金属轨道MNPQ固定在水平面内,相距为L,电阻不计。轨道端点MP间接有阻值为R的电阻一个长为L、质量为m、阻值为r的金属导体棒ab垂直于MNPQ放在轨道上,与轨道接触良好。质量为M的飞机以水平速度v0迅速钩住导体棒ab,钩住之后关闭动力系统并立即获得共同的速度。假如忽略摩擦等次要因素,飞机和金属棒系统仅在安培力作用下很快停下来求:

(1)飞机钩住金属棒后它们获得的共同速度v的大小;

(2)飞机在阻拦减速过程中获得的加速度a的最大值

(3)从飞机钩住金属棒到它们停下来的整个过程中运动的距离x

查看答案和解析>>

同步练习册答案