精英家教网 > 高中物理 > 题目详情
1.登月探测器由地球出发经地月转移轨道靠近月球后,先在近月圆轨道上绕月运行,继而经过一系列减速过程后将包围在探测器外面的气囊充气再落向月球,落月后再经过多次弹跳最终静止在平坦的月球表面上.已知探侧器第一次着月弹起到达最高点时距离月球表面的高度为h,速度方向是水平的,速度大小为v0,第二次着月点到第一次弹起最高点的水平距离为x,月球半径为r.
(1)求月球表面的重力加速度的大小g
(2)忽略探测器近月圆轨道距月表的高度,求其近月绕行的速度大小v和周期T.

分析 (1)探测器第一次落到月球表面弹起后,到达最高点的高度为h,此后做平抛运动,根据平抛运动基本规律求解.
(2)根据万有引力提供向心力和万有引力等于重力结合向心力公式求解线速度和周期.

解答 解:(1)探测器第一次落到月球表面弹起后,到达最高点的高度为h,此后做平抛运动,
则水平方向有:t=$\frac{x}{{v}_{0}}$,
竖直方向有:h=$\frac{1}{2}{g}_{月}{t}^{2}$
解得:g=$\frac{2h{{v}_{0}}^{2}}{{x}^{2}}$
(2)根据月球表面,万有引力等于重力结合向心力公式得:
mg=m$\frac{{v}^{2}}{r}$=m$\frac{4{π}^{2}r}{{T}^{2}}$
解得:v=$\sqrt{{g}_{月}r}=\sqrt{\frac{2h{{v}_{0}}^{2}r}{{x}^{2}}}$,T=$\sqrt{\frac{4{π}^{2}r{x}^{2}}{2h{{v}_{0}}^{2}}}$
答:(1)月球表面的重力加速度的大小g为$\frac{2h{{v}_{0}}^{2}}{{x}^{2}}$;
(2)忽略探测器近月圆轨道距月表的高度,其近月绕行的速度大小v为$\sqrt{\frac{2h{{v}_{0}}^{2}r}{{x}^{2}}}$,周期T为$\sqrt{\frac{4{π}^{2}r{x}^{2}}{2h{{v}_{0}}^{2}}}$.

点评 本题的关键是知道探测器第一次落到月球表面弹起到达最高点后做平抛运动,能根据平抛运动基本规律结合万有引力提供向心力公式求解,难度适中.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:解答题

11.有一小灯泡上标有“3V  0.3A”字样,现要描绘该小灯泡的伏安特性曲线,有下列器材供选用:
A 电压表(0~3V,内阻2.0kΩ)
B 电压表(0~5V,内阻3.0kΩ)
C 电流表(0~0.3A,内阻2.0Ω)
D 电流表(0~6A,内阻1.5Ω)
E 滑动变阻器(2A,30Ω)
F 滑动变阻器(0.5A,1000Ω)
G 学生电源(直流4.5V),及开关,导线等
(1)实验中为了精度尽量高,且有足够大测量范围,则所用的电压表应选A,电流表应C,滑动变阻器应选E
(2)请在答卷实物图中用铅笔画线代替导线连接实验电路.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

12.用橡皮筋探究功与速度变化的实验中小车会受到阻力,可以使木板倾斜作为补偿,则下面操作正确的是 (  )
A.使拖着纸带的小车由静止释放,小车不下滑即可
B.使拖着纸带的小车由静止释放,小车能下滑即可
C.小车挂着纸带,轻推小车后,小车能匀速下滑即可(打点计时器在纸带上打出点均匀分布)
D.小车不用挂纸带,轻推小车,小车能匀速下滑即可(打点计时器在纸带上打出点均匀分布)

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

9.如图所示连接的电路中,闭合开关调节电阻箱,使电压表的示数增大△U,已知电源的内阻不能忽略,用I1、I2分别表示流过R1、R2的电流,△I1、△I2分别表示流过R1、R2的电流的变化量,U1、U2分别表示R1、R2两端的电压,则下列说法正确的是(  )
A.△I1>0,且△I1=$\frac{△U}{{R}_{1}}$
B.U2减小,且△U2=△U
C.I1减小,且△I2<$\frac{△U}{{R}_{2}}$
D.电源的输出电压增大,且增大量为△U

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

16.光滑的绝缘平面上,固定着一个金属小球A,用绝缘材料制成的弹簧把A与另一个相同的金属小球B连接起来,然后让A和B带上同种电荷,则弹簧伸长量为x0,由于某种原因,弹簧漏电,则伸长量为x,则有(  )
A.x=x0B.x>x0C.x<x0D.无法确定

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

6.可绕固定轴OO′转动的正方形线框的边长为L,不计摩擦和空气阻力,线框从水平位置由静止释放,达到竖直位置用的时间为t,ab边的速率为v,设线框始终处在方向竖直向下,磁感应强度为B的匀强磁场中,如图所示,求:
(1)这个过程中回路中的感应电动势;
(2)到达竖直位置瞬间回路中的感应电动势.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

4.如图所示,水平路面CD的左侧有一固定的平台,平台上表面AB长s=3m.光滑半圆轨道AFE竖直固定在平台上,圆轨道半径R=0.4m,最低点与平台AB相切于A,板长L1=2m,上表面与平台等高,当板的左端距离平台L=2m时,放在板的最右端质量m=1kg的小物块,随板一起以速度v0=8m/s向平台运动.当板与平台的竖直墙壁碰撞后,板立即停止运动,物块在板上继续滑动.己知板与路面的动摩擦因数μ1=0.05,物块与板上表面及轨道AB的动摩擦因数μ2=0.1,取g=10m/s2
(1)求物块进入圆轨道时对轨道上A点的压力;
(2)判断物块能否到达圆轨道的最髙点E如果能,求物块离开E后在平台上的落点到A的距离;如果不能,则说明理由.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

1.一般来说,正常人从距地面1.5m高处跳下,落地时速度较小,经过腿部的缓冲,这个速度对人是安全的,称为安全着地速度.如果人从高空跳下,必须使用降落伞才能安全着陆,其原因是,张开的降落伞受到空气对伞向上的阻力作用.经过大量实验和理论研究表明,空气对降落伞的阻力f与空气密度ρ、降落伞的迎风面积S、降落伞相对空气速度v、阻力系数c有关(由伞的形状、结构、材料等决定),其表达式是f=$\frac{1}{2}cρS{v^2}$.根据以上信息,解决下列问题.(取g=10m/s2
(1)在忽略空气阻力的情况下,计算人从1.5m高处跳下着地时的速度大小(计算时人可视为质点);
(2)在某次高塔跳伞训练中,运动员使用的是有排气孔的降落伞,其阻力系数c=0.90,空气密度取ρ=1.25kg/m3.降落伞、运动员总质量m=80kg,张开降落伞后达到匀速下降时,要求人能安全着地,降落伞的迎风面积S至少是多大?
(3)跳伞运动员和降落伞的总质量m=80kg,从跳伞塔上跳下,在下落过程中,经历了张开降落伞前自由下落、张开降落伞后减速下落和匀速下落直至落地三个阶段.如图是通过固定在跳伞运动员身上的速度传感器绘制出的从张开降落伞开始做减速运动至达到匀速运动时的v-t图象.根据图象估算运动员做减速运动的过程中下落的高度.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

2.如图所示,斜面倾角为θ,位于斜面底端A正上方的小球以初速度v0正对斜面顶点B水平抛出,小球到达斜面经过的时间为t,重力加速度为g,则下列说法中正确的是(  )
A.若小球以最小位移到达斜面,则t=$\frac{2{v}_{0}cotθ}{g}$
B.若小球垂直击中斜面,则t=$\frac{{v}_{0}cotθ}{2g}$
C.若小球能击中斜面中点,则t=$\frac{2{v}_{0}cotθ}{g}$
D.无论小球怎样到达斜面,运动时间均为t=$\frac{2{v}_{0}tanθ}{g}$

查看答案和解析>>

同步练习册答案