A£® | ÕâÈý¸öÁ¦µÄºÏÁ¦¿ÉÄÜΪÁã | |
B£® | F1¡¢F2Á½¸öÁ¦µÄºÏÁ¦´óС¿ÉÄÜΪ20N | |
C£® | ÈôÎïÌå´¦ÓÚÔÈËÙÖ±ÏßÔ˶¯×´Ì¬£¬ÔòF1¡¢F3µÄºÏÁ¦´óСΪ48N£¬·½ÏòÖ¸ÏòÕýÄÏ | |
D£® | ÈôÎïÌå´¦ÓÚ¾²Ö¹×´Ì¬£¬ÔòF1¡¢F3µÄºÏÁ¦´óСһ¶¨Îª28N£¬·½ÏòÖ¸ÏòÕýÄÏ |
·ÖÎö Á½¸öÁ¦F1ÓëF2µÄºÏÁ¦µÄ·¶Î§Îª£º|F1-F2|¡ÜF¡ÜF1+F2£»
ÓÉÓÚÎïÌåÊܹ²µãÁ¦F1¡¢F2¡¢F3×÷Óã¬Èç¹ûÁ¦µÄ·½ÏòÊÇÈÎÒâµÄ£¬ÈÎÒâÒ»¸öÁ¦µÄ´óСÔÚÆäËûÁ½¸öÁ¦µÄºÏÁ¦·¶Î§Ö®ÄÚ£¬ÄÇôÈý¸öÁ¦ºÏÁ¦µÄ×îСֵΪÁã
½â´ð ½â£ºA¡¢¸ù¾ÝÁ½¸öÁ¦F1ºÍF2µÄºÏÁ¦·¶Î§|F1-F2|¡ÜFºÏ¡ÜF1+F2£¬µÃF1ºÍF2µÄºÏÁ¦·¶Î§Îª14N¡ÜFºÏ¡Ü70N£¬F3=20N£¬ÔòF3ÓëF1ºÍF2µÄºÏÁ¦´óС¿ÉÄÜÏàµÈ£¬ÔòÈý¸öÁ¦µÄºÏÁ¦¿ÉÄÜΪÁ㣮¹ÊAÕýÈ·£®
B¡¢F1ºÍF2µÄºÏÁ¦·¶Î§Îª14N¡ÜFºÏ¡Ü70N£¬ÔòF1¡¢F2Á½¸öÁ¦µÄºÏÁ¦´óС¿ÉÄÜΪ20 N£®¹ÊBÕýÈ·£®
C¡¢ÈôÎïÌå´¦ÓÚÔÈËÙÖ±ÏßÔ˶¯×´Ì¬£¬ºÏÍâÁ¦ÎªÁ㣬F1¡¢F3µÄºÏÁ¦ÓëF2=28N´óСÏàµÈ¡¢·½ÏòÏà·´£¬¼´F1¡¢F3µÄºÏÁ¦´óСΪ28N£¬·½ÏòÓëF2·½ÏòÏà·´£¬ÕýÄÏ£®¹ÊC´íÎó£®
D¡¢ÈôÎïÌå´¦ÓÚ¾²Ö¹×´Ì¬£¬ºÏÍâÁ¦ÎªÁ㣬F1¡¢F3µÄºÏÁ¦´óСÓëF2=28N´óСÏàµÈ£¬·½ÏòÏà·´£¬¼´F1¡¢F3µÄºÏÁ¦´óСһ¶¨Îª28 N£¬·½ÏòÖ¸ÏòÕýÄÏ£®¹ÊDÕýÈ·£®
¹ÊÑ¡£ºABD
µãÆÀ ±¾Ìâ¹Ø¼üÒªÃ÷È·Á½¸ö¹²µãÁ¦µÄºÏÁ¦µÄ·¶Î§£¬Í¬Ê±ÒªÃ÷È·ÈýÁ¦Æ½ºâʱ£¬ÈÎÒâÁ½¸öÁ¦µÄºÏÁ¦ÓëµÚÈý¸öÁ¦µÈÖµ¡¢·´Ïò¡¢¹²Ïߣ¬ÄѶȲ»´ó£¬ÊôÓÚ»ù´¡Ì⣮
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | СÇò´ÓOÔ˶¯µ½P¡äµÄʱ¼äÊÇ´ÓOµ½Pʱ¼äµÄ2±¶ | |
B£® | ¼Ð½Ça¡äÊÇaµÄ2±¶ | |
C£® | СÇòͨ¹ýP¡äµãµÄËÙÂÊÊÇ4v | |
D£® | OP¡ä=2OP |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | E${\;}_{{v}_{2}}$£¼E${\;}_{{v}_{1}}$£¬T2£¼T1 | B£® | E${\;}_{{v}_{2}}$£¼E${\;}_{{v}_{1}}$£¬T2£¾T1 | ||
C£® | E${\;}_{{v}_{2}}$£¾E${\;}_{{v}_{1}}$£¬T2£¼T1 | D£® | E${\;}_{{v}_{2}}$£¾E${\;}_{{v}_{1}}$£¬T2£¾T1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | Q´¦·ÅÖõÄҲΪÕýµçºÉ | |
B£® | aµãºÍbµãµÄµç³¡Ç¿¶ÈÏàͬ | |
C£® | ͬһÕýµçºÉÔÚcµãµÄµçÊÆÄÜСÓÚÔÚdµãµÄµçÊÆÄÜ | |
D£® | ¸ºµçºÉ´ÓaµãÒƵ½cµãµçÊÆÄܼõÉÙ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
ºì±í±Ê | A | C | C | B | A | B |
ºÚ±í±Ê | C | A | B | C | B | A |
×è Öµ | ÓÐ×èÖµ | ×èֵͬAC²âÖµ | ºÜ´ó | ºÜС | ºÜ´ó | ½Ó½üAC¼ä×èÖµ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | A¡¢BÁ½ÖʵãÔÚ4sÄ©ÏàÓö | |
B£® | BÖʵã×î³õ4s×ö¼ÓËÙÔ˶¯£¬ºó4Ãë×ö¼õËÙÔ˶¯ | |
C£® | BÖʵãÏÈÑØÕý·½Ïò×öÖ±ÏßÔ˶¯£¬ºóÑظº·½Ïò×öÖ±ÏßÔ˶¯ | |
D£® | AÖʵãÒÔ20m/sµÄËÙ¶ÈÔÈËÙÔ˶¯ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\sqrt{\frac{{{m_2}{R_1}}}{{{m_1}{R_2}}}}$v£¬$\sqrt{\frac{{{m_1}R_2^3}}{{{m_2}R_1^3}}}$T | |
B£® | $\sqrt{\frac{{{m_1}{R_2}}}{{{m_2}{R_1}}}}$v£¬$\sqrt{\frac{{{m_2}R_1^3}}{{{m_1}R_2^3}}}$T | |
C£® | $\sqrt{\frac{{{m_2}{R_1}}}{{{m_1}{R_2}}}}$v£¬$\sqrt{\frac{{{m_2}R_1^3}}{{{m_1}R_2^3}}}$T | |
D£® | $\sqrt{\frac{{{m_1}{R_2}}}{{{m_2}{R_1}}}}$v£¬$\sqrt{\frac{{{m_1}R_2^3}}{{{m_2}R_1^3}}}$T |
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com