·ÖÎö £¨1£©Á£×ÓÔڵ糡ÖÐ×öÀàƽÅ×Ô˶¯£¬½«Á£×ÓµÄÔ˶¯·Ö½â£¬¼´¿ÉÇó³öÁ£×ÓÉä³öµç³¡Ê±µÄËٶȴóС£¬È»ºó½áºÏ¶¯Äܶ¨Àí¼´¿ÉÇó³öµç³¡Ç¿¶ÈµÄ´óС£»
£¨2£©Á£×ÓÔڴų¡ÖÐ×öÔÈËÙÔ²ÖÜÔ˶¯£¬»³öÁ£×ÓÔ˶¯µÄ¹ì¼££¬ÕÒ³öÁ£×ÓÔ˶¯µÄ°ë¾¶£¬½áºÏÂåÂ××ÈÁ¦ÌṩÏòÐÄÁ¦£¬¼´¿ÉÇó³ö´Å¸ÐӦǿ¶È£»
£¨3£©Á£×ÓÔ˶¯µÄÖÜÆÚµÈÓÚÁ£×Ó·Ö±ðÔڵ糡ÖÐÓë´Å³¡ÖÐÔ˶¯Ê±¼äµÄºÍ£¬½áºÏÔ˶¯µÄ¹ì¼££¬·Ö±ðÇó³ö¸÷¶Îʱ¼ä¼´¿É£®
½â´ð ½â£º£¨1£©Á£×ÓÔڵ糡ÖÐÑؼ«°åµÄ·½Ïò×öÔÈËÙÖ±ÏßÔ˶¯£¬ÉèÁ£×ÓÔÚa¡¢b°å¼äÔ˶¯Ê±¼äΪt1£¬t1=$\frac{L}{v}$£»
Ñص糡Ïߵķ½Ïò£º$\frac{1}{2}L=\frac{0+{v}_{y}}{2}•{t}_{1}$
ËùÒÔ£ºvy=v
ÖªÁ£×ÓÇ¡ºÃ´Óa¡¢b°åÓÒ²à±ßÔµ£¨²»½Ó´¥£©·É³öʱËٶȴóСΪ£º$v¡ä=\sqrt{{v}^{2}+{v}_{y}^{2}}=\sqrt{2}v$
Á£×ÓÔڵ糡ÖÐÔ˶¯£¬µç³¡Á¦×ö¹¦£¬µÃ£ºqE$\frac{1}{2}$L=$\frac{1}{2}$m£¨$\sqrt{2}$v£©2-$\frac{1}{2}$mv2
ÁªÁ¢µÃ£ºE=$\frac{m{v}^{2}}{qL}$
£¨2£©ÓÉÌâ¿ÉÖª£¬Á£×ӻص½O¡äµãµÄËÙ¶ÈΪv£¬ÔÚ¼«°å×ó²à×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÓÉͼ¿ÉÖª£¬Á£×Ó´ÓO¡ä»Øµ½O×öÔÈËÙÔ²ÖÜÔ˶¯°ë¾¶R=L£¬ËÙÂÊΪv£¬Ôò£º
qvB=$\frac{m{v}^{2}}{L}$
µÃ£ºB=$\frac{mv}{qL}$
£¨3£©»³öÁ£×ÓÔ˶¯µÄ¹ì¼£Èçͼ£º
ÉèÁ£×ÓÔÚ°åÓÒ²àÇøÓò¢ñÔ˶¯Ê±¼äΪt2£¬ÔÚc¡¢d°å¼äÔ˶¯Ê±¼äΪt3£¬ÔÚ°å×ó²àÇøÓò¢òÔ˶¯Ê±¼äΪt4£¬ÓÉÔ˶¯¶Ô³ÆÐÔÖªt3=t1
Á£×Ó´ÓO¾O'»Øµ½O×öÖÜÆÚÐÔÔ˶¯µÄÖÜÆÚT=2t1+t2+t4
Á£×ÓÉä³öµç³¡Ê±Ëٶȵķ½ÏòÓëˮƽ·½ÏòÖ®¼äµÄ¼Ð½Ç£º$tan¦È=\frac{{v}_{y}}{v}=\frac{v}{v}=1$
ËùÒÔ£º¦È=45¡ãËùÒÔÓÉͼÖм¸ºÎ¹Øϵ¿ÉÖª£¬Á£×ÓÔÚ¼«°åÓÒ²àÔ˶¯µÄ°ë¾¶£º${r}_{1}=\frac{\frac{3}{2}L}{cos45¡ã}$=$\frac{{3\sqrt{2}L}}{2}$
Á£×ÓÔ˶¯µÄÊÇ£ºt2=$\frac{\frac{3}{4}¡Á2¦Ð{r}_{1}}{\sqrt{2}v}=\frac{9¦ÐL}{4v}$
Á£×ÓÔÚ¼«°åµÄ×ó²àµÄÔ˶¯¹ì¼£ÊÇ°ë¸öÔ²ÖÜ£¬ËùÒÔ£ºt4=$\frac{1}{2}•\frac{2¦Ð{r}_{2}}{v}=\frac{¦ÐL}{v}$
Á£×Ó´ÓO¾O'»Øµ½O×öÖÜÆÚÐÔÔ˶¯µÄÖÜÆÚT=£¨2+$\frac{13¦Ð}{4}$£©$\frac{L}{v}$
´ð£º£¨1£©ÔÈÇ¿µç³¡µç³¡Ç¿¶È´óСÊÇ$\frac{m{v}^{2}}{qL}$£»
£¨2£©ÇøÓòIIµÄ´Å³¡¸ÐӦǿ¶È´óСÊÇ$\frac{mv}{qL}$£»
£¨3£©Á£×Ó´ÓO¾O¡ä»Øµ½O×öÖÜÆÚÐÔÔ˶¯µÄÖÜÆÚÊÇ£¨2+$\frac{13¦Ð}{4}$£©$\frac{L}{v}$£®
µãÆÀ ¸ÃÌ⿼²éÁ£×ÓÔڵ糡ÖÐÓë´Å³¡ÖеÄÔ˶¯£¬°´Õչ淶»¯µÄ²½Ö裬×ö³öÁ£×ÓÔ˶¯µÄ¹ì¼££¬½áºÏ¼¸ºÎ¹Øϵ£¬ÕÒ³öÆäÖеij¤¶È¹ØϵÓë½Ç¶È¹Øϵ£¬¼´¿ÉÕýÈ·½â´ð£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | µ¯»ÉµÄµ¯Á¦Îª20N | B£® | ÖØÎïAµÄÖÊÁ¿Îª2$\sqrt{3}$kg | ||
C£® | ×ÀÃæ¶ÔÎïÌåBµÄĦ²ÁÁ¦Îª10$\sqrt{3}$N | D£® | ϸÏßOPÓëÊúÖ±·½ÏòµÄ¼Ð½ÇΪ60¡ã |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | ÒòΪv=$\sqrt{gR}$£¬ËùÒÔ»·ÈÆËÙ¶ÈËæRÔö´ó¶øÔö´ó | |
B£® | ÒòΪv=$\sqrt{\frac{GM}{R}}$£¬ËùÒÔ»·ÈÆËÙ¶ÈËæRÔö´ó¶ø¼õС | |
C£® | ÒòΪF=$\frac{GMm}{R2}$£¬ËùÒÔµ±RÔö´óµ½ÔÀ´µÄ2±¶Ê±£¬ÎÀÐÇËùÐèµÄÏòÐÄÁ¦¼õΪÔÀ´µÄ$\frac{1}{4}$ | |
D£® | ÒòΪF=$\frac{m{v}^{2}}{R}$£¬ËùÒÔµ±RÔö´óµ½ÔÀ´µÄ2±¶Ê±£¬ÎÀÐÇËùÐèµÄÏòÐÄÁ¦¼õΪÔÀ´µÄ$\frac{1}{2}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com