精英家教网 > 高中物理 > 题目详情
精英家教网某同学玩“弹珠游戏”装置如图所示,S形管道BC由两个半径为R的
1
4
圆形管道拼接而成,管道内直径略大于小球直径,且远小于R,忽略一切摩擦,用质量为m的小球将弹簧压缩到A位置,由静止释放,小球到达管道最高点C时对管道恰好无作用力,求:
(1)小球到达最高点C的速度大小;
(2)若改用同样大小质量为2m的小球做游戏,其它条件不变,求小球能到达的最大高度;
(3)若改用同样大小质量为
m
4
的小球做游戏,其它条件不变,求小球落地点到B点的距离.
分析:(1)小球到达管道最高点C时对管道恰好无作用力,由重力充当向心力,根据牛顿第二定律和向心力公式列式求解;
(2)对于小球与弹簧组成的系统机械能守恒,列式求出小球质量为m时弹簧的弹性势能.根据小球的机械能守恒求解最大高度.
(3)改用质量为
m
4
的小球时,小球能通过最高点C后做平抛运动,由机械能守恒定律求出小球能通过最高点C点的速度,再由平抛运动的规律求解.
解答:解:(1)由于小球到达管道最高点C时对管道恰好无作用力,根据牛顿第二定律和向心力公式有:mg=m
v
2
C
R

解得小球到达最高点C的速度大小为:vC=
gR

(2)由于忽略一切摩擦,因此小球与弹簧组成的系统机械能守恒,因此根据机械能守恒定律可知,弹簧弹性势能为:Ep=
1
2
mv
 
2
C
+2mgR=
5
2
mgR
改用质量为2m的小球时,因为Ep=
5
2
mgR<4mgR,所以小球不能到达C点,设此时小球能到达的最大高度为h,根据机械能守恒定律有:
 Ep=2mgh,
解得:h=
5
4
R
(3)改用质量为
m
4
的小球时,小球能通过最高点C后做平抛运动,设此时离开C点的速度为v,根据机械能守恒定律有:
Ep=
1
2
?
m
4
v+
1
2
mgR
根据平抛运动的规律可知,此时小球离开C点后做平抛运动的水平射程:x=v
4R
g

联立以上各式解得:x=8R
根据图中几何关系可知,小球落地点到B点的距离为:d=x+2R=10R
答:(1)小球到达最高点C的速度大小为
gR

(2)小球能到达的最大高度为
5
4
R;
(3)小球落地点到B点的距离为10R.
点评:本题主要考查了平抛运动规律、圆周运动向心力公式、牛顿第二定律、机械能守恒定律的应用问题,属于中档题.
练习册系列答案
相关习题

科目:高中物理 来源:2014届度江苏省扬州市高三第一学期期中检测物理试卷(解析版) 题型:计算题

(14分)某同学玩“弹珠游戏”装置如图所示,S形管道BC由两个半径为R的1/4圆形管道拼接而成,管道内直径略大于小球直径,且远小于R,忽略一切摩擦,用质量为m的小球将弹簧压缩到A位置,由静止释放,小球到达管道最高点C时对管道恰好无作用力,求:(    )

⑴小球到达最高点C的速度大小;

⑵若改用同样大小质量为2m的小球做游戏,其它条件不变,求小球能到达的最大高度;

⑶若改用同样大小质量为m/4的小球做游戏,其它条件不变,求小球落地点到B点的距离。

 

查看答案和解析>>

同步练习册答案