精英家教网 > 高中物理 > 题目详情
2.如图所示,等腰梯形线框从位于匀强磁场上方一定高度处自由下落,线框一直加速运动,直到导线框一半进入磁场时,导线框开始做匀速运动,已知磁场上边界水平,导线框下落过程两平行边始终竖直,左平行边长为a,右平行边为2a,从导线框刚进入磁场开始,下列判断正确的是(  )
A.在0~$\frac{a}{2}$这段位移内,导线框可能做匀加速运动
B.在$\frac{3a}{2}$~2a这段位移内,导线框做加速运动
C.在$\frac{a}{2}$~$\frac{3a}{2}$这段位移内,导线框减少的重力势能最终全部转化为内能
D.在0~$\frac{a}{2}$这段位移内,导线框克服安培力做功小于$\frac{3a}{2}$~2a这段位移内导线框克服安培力做功

分析 根据题意,当线圈的位移是$\frac{a}{2}$时,短边进入磁场,然后结合公式E=BLv、F=BIL以及功能关系即可做出判定;根据平均电流判断克服安培力做的功大小.

解答 解:A、在线圈开始进入磁场的过程中,线圈切割磁感线的有效长度增大,安培力的有效长度也增大,根据:E=BvL和F=BIL可知,在线圈加速的过程中,产生的电动势和安培力都是变化的,所以线圈受到的合外力也是变化的,所以加速度是变化的,线圈做变加速运动.故A错误;
B、当线圈的位移是$\frac{3a}{2}$时,左侧的短边恰好开始出磁场,此后线圈切割磁感线的有效长度开始减小,根据E=BvL和F=BIL可知,线框受到的安培力减小,小于重力,所以导线框做加速运动.故B正确;
C、由几何关系可知,当线圈的位移是$\frac{a}{2}$时,左侧的短边恰好进入磁场,此后线圈切割磁感线的有效长度不变,导线框先加速再做匀速运动,所以减小的重力势能转化为内能和动能.故C错误;
D、在0~$\frac{a}{2}$这段位移内,导线框的平均速度小于$\frac{3a}{2}$~2a这段位移内的平均速度,则在0~$\frac{a}{2}$的感应电流小于$\frac{3a}{2}$~2a这段位移内的感应电流,所以在0~$\frac{a}{2}$这段位移内,导线框克服安培力做功小于$\frac{3a}{2}$~2a这段位移内导线框克服安培力做功,故D正确.
故选:BD.

点评 本题是电磁感应与电路、力学相结合的题目,分析清楚线框运动过程,应用右手定则、匀变速运动的速度位移公式、E=BLv、安培力公式、牛顿第二定律即可正确解题.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:计算题

4.两个长度相同的轻质弹簧,一端挂在半径R=0.5m的半圆型竖直支架上.另一端挂上质量为M=1kg的物体,结点恰好在圆心O点,弹簧K2处于水平;弹簧K1与竖直半径成37°角.如图所示.已知弹簧K1的倔强系数K1=62.5N/m,g=10m/s2,sin37°=0.6,cos37°=0.8.求
(1)弹簧K2的倔强系数K2
(2)弹簧的原长.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

5.某同学用图(甲)所示的实验装置验证碰撞中动量守恒定律,他用两个完全相同的小钢球A、B进行实验,首先该同学使球A自斜槽某一高度由静止释放,从槽的末端水平飞出,测出球A落在水平地面上的点P与球飞出点在地面上竖直投影O的距离LOP.然后该同学使球A自同一高度由静止释放,在槽的末端与静止的球B发生非对心弹性碰撞,如图(乙).碰撞后两球向不同方向运动,测出两球落地点M、N与O点间的距离LOM、LON,该同学多次重复上述实验过程,并将测量值取平均值.在忽略小球半径的情况下,对该实验的结果,分析正确的是(  )
A.LOP=LOM+LON
B.LOP2=LOM2+LON2
C.OM、ON与OP间的夹角大小一定相等
D.OM与ON间夹角大小与两球碰撞的方向有关

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

2.汽车沿平直的公路以恒定功率从静止开始启动,行驶200s后速度达到17m/s,设汽车所受阻力恒定,下列说法中正确的是(  )
A.汽车的牵引力逐渐增大
B.汽车做匀加速运动
C.汽车做加速度逐渐增大的加速运动
D.汽车在这段时间内行驶的距离一定大于1700 m

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

9.如图所示,半径R=$4\sqrt{3}$cm的圆形玻璃砖,AB为玻璃砖的直径.一束光线平行于直径AB射向玻璃砖左侧界面,且光束到AB的距离d=6cm,光线经玻璃砖折射后由B点射出.已知光在真空中的传播速度c=3.0×108 m/s,求:
①玻璃砖的折射率;
②光线在玻璃砖中传播的时间.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

7.如图所示,水平放置的电容器与滑动变阻器Rx并联,然后与阻值为R0的定值电阻以及间距为s的足够长的光滑固定倾斜导轨相连接,导轨处于匀强磁场之中,磁场方向垂直于导轨平面向上.将滑动变阻器Rx的阻值调到等于定值电阻的阻值R0,然后将导体棒自导轨上端由静止释放,待速度稳定后,从电容器左端中点沿两极板中线以水平速度v0射入的电子恰能从极板边缘离开电场.已知磁场的磁感应强度为B,电子的质量为m(重力忽略不计)、电荷量为q.电容器两板间距为d、板长为L,金属导轨与水平面夹角为θ,导体棒的电阻为R0,重力加速度为g.则:
(1)电子从哪个极板离开电场?
(2)求导体棒的质量M以及导体棒稳定时的速度vl

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

14.如图所示,已知绳长L=40$\sqrt{2}$cm,水平杆长L'=0.1m,小球质量m=0.3kg,整个装置可以绕竖直转轴转动,g=10m/s2,问:
(1)要使绳子与竖直方向成45°角,该装置必须以多大的角速度转动才行?
(2)此时绳子的拉力为多大?

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

11.如图所示,质量m=1.1kg的物体(可视为质点)用细绳拴住,放在水平传送带的右端,物体和传送带之间的动摩擦因数μ=0.5,传送带的长度L=5m,当传送带以v=5m/s的速度做逆时针转动时,绳与水平方向的夹角θ=37°.已知:g=l0m/s2,sin 37°=0.6,cos 37°=0.8.
(1)求传送带稳定运动时绳子的拉力T;
(2)某时刻剪断绳子,物体在传送带上匀加速运动的加速度和位移;
(3)求物体运动至传送带最左端所用时间.

查看答案和解析>>

同步练习册答案