精英家教网 > 高中物理 > 题目详情
19.甲、乙两质点从同一位置出发,沿同一直线路面运动,它们的v-t图象如图所示.对这两质点在0~3s内运动的描述,下列说法正确的是(  )
A.t=2 s时,甲、乙两质点相遇
B.在甲、乙两质点相遇前,t=1 s时,甲、乙两质点相距最远
C.甲质点的加速度比乙质点的加速度小
D.t=3 s时,乙质点在甲质点的前面

分析 由速度图象可直接读出速度的大小,两图线的交点表示速度相等.两物体由同一地点向同一方向作直线运动,当位移相等时两物体相遇,斜率表示加速度.结合这些知识分析.

解答 解:A、根据“面积”表示位移,可得,t=2s时,甲的位移 x=$\frac{2+\frac{2}{3}}{2}×2$m=$\frac{8}{3}$m,乙的位移 x=$\frac{1+2}{2}×2$m=3m,位移不等,t=2 s时,两质点没有相遇.故A错误.
B、t=1s前,甲的速度比乙的大,甲在乙的前方,两者间距增大.t=1s后,乙的速度比甲的大,两者间距减小,所以t=1 s时,甲、乙两质点相距最远.故B正确.
C、由图象的斜率表示加速度,知甲质点的加速度比乙质点的加速度小.故C正确.
D、由几何知识可知,t=3 s时,乙质点的位移比甲的大,两者又是从同一地点向同一方向出发的,所以t=3 s时,乙质点在甲质点的前面,故D正确.
故选:BCD

点评 解决本题的关键知道速度时间图线的物理意义,知道图线的斜率表示加速度,图线与时间轴围成的面积表示位移.要理解两图象的交点往往表示两个质点相距最远或最近.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:计算题

7.某校举行托乒乓球跑步比赛,某同学将球置于球拍中心,从静止开始做匀加速直线运动,当速度达到v0后做匀速直线运动跑至终点,整个过程球一直保持在球拍中心不动,比赛中该同学在匀速直线运动阶段保持球拍的倾角为θ,如图所示.设球在运动中受到空气阻力大小与其速度大小成正比,方向与运动方向相反,不计球与球拍之间的摩擦,球的质量为m,重力加速度为g.求空气阻力大小与球速大小的比例系数k.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

10.如图(甲)所示,小孩用60N的水平力推木箱不动,木箱此时受到的摩擦力大小为F1;(乙)图中,小孩用90N的水平力恰能推动木箱,此时木箱与地面间的摩擦力大小为F2;(丙)图中,小孩把木箱推动了,此时木箱与地面间摩擦力大小为F3.若木箱对地面的压力大小为100N,木箱与地面间动摩擦因数为μ=0.85,则F1、F2、F3的大小分别为(  )
A.60N、90N、90NB.60N、45N 85NC.60N、90 N,85ND.0、90N、85N

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

7.在圆形区域内有垂直纸面向里的匀强磁场.从磁场边缘A点沿半径方向射人一束速率不同的质子,对这些质子在磁场中的运动情况的分析中,正确的是(  )
A.运动时间越长的,在磁场中通过的距离越长
B.运动时间越短的,其速率越大
C.磁场中偏转角越小的,运动时间越短
D.所有质子在磁场中的运动时间都相等

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

14.如图所示,在水平面上行驶的车厢中,车厢底部放有一个质量为m1的木块,车厢顶部悬挂一质量为m2的球,悬绳与竖直方向成θ角,它们相对车厢处于静止状态,由此可以判定(  )
A.车厢可能正在向左匀加速行驶
B.车厢一定正在向右匀加速行驶
C.木块对车厢底部的摩擦力大小为m1gtan θ
D.木块对车厢底部的摩擦力为零

查看答案和解析>>

科目:高中物理 来源: 题型:实验题

4.材料的电阻随压力的变化而变化的现象称为“压阻现象”,利用这种效应可以测量压力大小,若图1为某压敏电阻在室温下的电阻--压力特性曲线,其中RF、R0分别表示有、无压力时压敏电阻的阻值,为了测量压力F,需先测量压敏电阻处于压力中的电阻值RF,请按要求完成下列实验.

(1)设计一个可以测量处于压力中的该压敏电阻阻值的电路,在图2的虚线框内画出实验电路原理图(压敏电阻及所给压力已给出,待测压力大小约为0.4×102:0.8×102N,不考虑压力对电路其它部分的影响).要求误差较小.提供的器材如下:
A、压敏电阻,无压力时阻值R0=6000Ω
B、滑动变阻器R,全电阻约200Ω
C、电流表A,量程2.5mA,内阻约30Ω
D、电压表V,量程3V,内阻约3kΩ
E、直流电源E,电动势3V,内阻很小
F、开关S,导线若干
(2)正确连线后,将压敏电阻置于待测压力下,通过压敏电阻的电流是1.33mA,电压表的示数如图3所示,则电压表的读数为2.00V.
(3)此时压敏电阻的阻值为1.5×103Ω;结合图1可知待测压力的大小F=60N.(计算结果均保留两位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

11.如图所示,AB为一光滑水平横杆,杆上套一质量为M的小圆环,环上系一长为L质量不计的细绳,绳的另一端拴一质量为m的小球,现将绳拉直,且与AB平行,由静止释放小球,则:
(1)当线绳与AB成θ角时,圆环移动的距离是多少?
(2)求小球运动到最低点时的速度大小.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

8.某同学采用如图甲所示装置做“验证机械能守恒定律”实验,电火花计时器接在频率为50HZ的交流电源上.图乙为一条打出的符合要求的纸带,第一点记为O(此时重物速度为零),在适当位置取一点A,B、C、D、E、F为其后连续打出的点.若重物的质量为1.00kg,取g=9.80m/s2,则打E点时,重物的速度为1.15m/s(计算结果保留3位有效数字,下同);在打O、E两点的过程中,重物下落的高度是7.04cm,减少的重力势能是0.690J,增加的动能是0.661J,由上述计算得△Ep>△Ek (选填“>”、“<”或“=”),造成这种结果的主要原因阻力的存在.

查看答案和解析>>

科目:高中物理 来源: 题型:计算题

9.一般认为激光器发出的是频率为ν的“单色光”,实验上它的频率并不是真正单一的,激光频率是它的中心频率,它所包含的频率范围是△ν(也称频率宽度),如图所示.让单色光照射到薄膜表面a,一部分光从前表面反射回来,这部分光称为甲光,其余的光进入薄膜内部,其中一小部分光从薄膜后表面b反射回来,再从前表面折射出,这部分光称为乙光.当甲、乙两部分光相遇后叠加而发生干涉,成为薄膜干涉.乙光与甲光相比,要在薄膜中多传播一小段时间△t.理论和实践都证明,能观察到明显稳定的干涉现象的条件是:△t的最大值△tm与△ν的乘积近似等于1,即只有满足:△tm•△ν≈1,才会观察到明显稳定的干涉现象.
已知红宝石激光器发出的激光频率为ν=4.32×1014 Hz,它的频率宽度为△ν=8.0×109 Hz,让这束激光由空气斜射到折射率为n=$\sqrt{2}$ 的薄膜表面,入射时与薄膜表面成45°,如图所示.
(1)求从O点射入薄膜的光的传播速度;
(2)估算在题图所示的情况下,能观察到明显稳定干涉现象的薄膜的最大厚度.

查看答案和解析>>

同步练习册答案