精英家教网 > 高中物理 > 题目详情
1.一只电流表的满偏电流为Ig=300μA,内阻为Rg=100Ω,若改装成量程为I=0.6A的电流表,应并联的电阻阻值为0.05Ω;若改装成量程为U=3V的电压表,应串联一个阻值为9900Ω的电阻.

分析 把电流计改装成大量程的电流表应该并联一个小电阻分流,改装成大量程电压表应该串联一个大电阻用来分压.

解答 解:若改装成量程为I=0.6A的电流表,并联的电阻两端电压为:
$U={U}_{g}={I}_{g}{R}_{g}=300×1{0}^{-6}×100V=3×1{0}^{-2}V$
流过电阻的电流为:${I}_{1}=I-{I}_{g}=0.6A-300×1{0}^{-6}A=0.5997A$
故有:${R}_{1}=\frac{U}{{I}_{1}}=\frac{3×1{0}^{-2}}{0.5997}Ω=0.05Ω$
若改装成量程为U=3V的电压表,流过串联的电阻电流为:${I}_{2}={I}_{g}=3×1{0}^{-4}A$
电阻两端的电压为:U2=U-Ug=3-0.03V=2.97V
故有:${R}_{2}=\frac{{U}_{2}}{{I}_{2}}=\frac{2.97}{3×1{0}^{-4}}Ω=9900Ω$
故答案为:0.05,9900.

点评 电表的改装,把握不变量,改装成电流表,两端电压不变;改装成电压表,串联后电流不变.再根据电路,利用欧姆定律就能解出电阻的大小.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

15.如图所示,竖直放置的半径为R的光滑圆环,AC为竖直方向的一条直径,A点有一光滑小孔,有一小环B套在圆环上,用一细线栓在小环B上,细线穿过小孔A,用拉力F拉小环B,使它沿圆周缓慢向上移动,在向上移动的过程中,关于拉力F与圆环对小环的弹力FN的说法正确的是(  )
A.FN的大小不变B.FN大小一直变小C.F先变小后变大D.F一直变小

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

16.某组同学设计了“探究加速度a与物体所受合力F及质量m的关系”实验.图(a)为实验装置简图,A为小车,B为电火花计时器,C为装有细砂的小桶,D为一端带有定滑轮的长方形木板,实验中认为细绳对小车拉力F等于细砂和小桶的总重量,小车运动的加速度a可用纸带上打出的点求得.
①图(b)为某次实验得到的纸带,已知实验所用电源的频率为50Hz取纸带上每两个点为一个计数点A、B、C、D、E.根据纸带可求出小车的加速度大小为0.31m/s2.(结果保留两位有效数字)
②在不改变小车质量的情况下,根据实验收集的数据作出的a‐F 图线如图丙所示,其中F为砝码及砝码盘的总重力大小.若最大静摩擦力等于滑动摩擦力,不计滑轮质量和细线与滑轮间的摩擦,已知在某一次实验中通过打出的纸带处理得小车的加速度为a,通过天平称得小车质量为M,砝码和砝码盘总质量为m,当地重力加速度为g,则图(c)中F0的大小为mg-(M+m)a(用已知物理量的字母表示)
③根据图丙中作出的a‐F 图线,请写出一条对提高本实验结果准确程度有益的建议实验前要先平衡摩擦力.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

13.地球表面的重力加速度g0=9.8m/s,忽略地球自转的影响,在距离地面高度为h=1.0×105m的空中重力加速度g与g0的差值是多大?取地球半径R=6.37×106m.

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

20.如图所示,一半径为R=0.5m,粗糙程度均匀的半圆形轨道竖直固定在水平面上,直径MN水平,一可视为质点的小球自M点由静止开始下落,由于摩擦阻力的作用,来回滑动数次后最终停在轨道底部,若小球到达右侧的最高位置为P点,P距地面的高度h1=0.4m,小球到达左侧除M点外最高位置为Q点,则关于Q距地面的高度h2的值可能正确的是(  )
A.0.32mB.0.30mC.0.28mD.0.20m

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

6.在下列介绍的各种情况中,可能出现超重现象的是(  )
A.荡秋千经过最低点的小孩
B.汽车过凸形桥
C.汽车过凹形桥
D.绕地球做匀速圆周运动的飞船中的仪器

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

13.一个小球在液体里运动,会受到一种类似于摩擦的液体阻力的作用,叫做粘滞力.如果液体无限深广,计算粘滞力的关系式为F=3πDηv,其中D为小球直径,v为小球在液体中的运动速度,η称作粘滞系数.
实验创新小组的同学们通过下面实验测量了某液体的粘滞系数.

(1)取一个装满液体的大玻璃缸,放在水平桌面上,将质量为1kg的小钢球沉入液体底部,可以忽略除粘滞力以外的所有摩擦阻力的作用.将一根细线拴在小钢球上,细线另一端跨过定滑轮连接砝码盘.在玻璃缸内靠左端固定两个光电门A、B,光电门的感光点与小钢球的球心在同一条水平线上.
(2)测出小钢球直径为5.00cm,将钢球由玻璃缸底部右侧释放,调整砝码数量以及释放小钢球的初始位置,确保小钢球通过两个光电门的时间相同.若某次测出小钢球通过两个光电门的时间均为0.025s,则可得小钢球此时运动的速度大小为2.0m/s.
(3)记录此时砝码盘以及砝码的总质量m=60g,由计算粘滞力的关系式可得液体的粘滞系数为η=0.62N•s/m2
(4)改变砝码数量,重复第(2)、(3)步骤的实验,测出不同质量的砝码作用下,小钢球匀速运动速度.由表中数据,描点连线,作出粘滞力随速度变化的图象(如图2).
12345678
砝码盘以及砝码的总质量m/g30405060708090100
粘滞力F/N0.300.400.500.600.700.800.901.0
小钢球匀速运动速度v/m•s-11.31.82.22.03.13.54.04.4
根据计算粘滞力的关系式和图象,可得该液体的粘滞系数为η=0.48N•s/m2.(所有结果均保留两位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

10.在空间区域竖直平面内存在电场,一个质量为m、带电量为q的带正电的小球,在电场中从A点由静止开始沿竖直方向向下运动,不计空气阻力,运动过程中小球的机械能E与物体位移x的关系图象如图所示,由此可判断沿小球运动路径(  )
A.小球的电势能不断减小B.小球的电势不断减小
C.电场的电场强度的方向竖直向下D.电场的电场强度不断减小

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

11.如图甲所示的装置叫做阿特伍德机,是英国数学家和物理学家阿特伍德创新的一种著名力学实验装置,用来研究匀变速直线运动的规律.某同学对该装置加以改进后用来验证机械能守恒定律如图乙所示.实验时,该同学进行了如下操作:
   将质量均为M(A的含挡光片、B的含挂钩)的重物用绳连接后,跨放在定滑轮上,处于静止状态.测量出挡光片中心到光电门中心的竖直距离h.
   在B的下端挂上质量为m的物块C,让系统(重物A、B以及物块C)中的物体由静止开始运动,光电门记录挡光片挡光的时间为△t.
   测出挡光片的宽度d,计算有关物理量,验证机械能守恒定律.
(1)如果系统(重物A、B以及物块C)的机械能守恒,应满足的关系式为mgh=$\frac{1}{2}(2M+m)\frac{{d}^{2}}{△{t}^{2}}$.
(2)引起该实验系统误差的原因有绳子有一定的质量、滑轮与绳子之间有摩擦、重物运动受到空气阻力等(写一条即可).
(4)验证实验结束后,该同学突发奇想:如果系统(重物A、B以及物块C)的机械能守恒,不断增大物块C的质量m,重物B的加速度a也将不断增大,那么a与m之间有怎样的定量关系?a随m增大会趋于一个什么值?请你帮该同学解决:
①写出a与m之间的关系式$\frac{g}{\frac{2M}{m}+1}$(还要用到M和g).
②a的值会趋于g.

查看答案和解析>>

同步练习册答案