精英家教网 > 高中物理 > 题目详情
15.在竖直平面内,一根光滑金属杆弯成如图1所示形状,相应的曲线方程为y=5.0cos(kx+$\frac{2π}{3}$)(单位:m),式中k=$\frac{1}{5}$m-1,杆足够长,图中只画出了一部分.将一质量为m=1.0kg的小环(可视为质点)套在杆上,取g=10m/s2

(1)若使小环以v1=10m/s的初速度从x=0处沿杆向下运动,求小环运动到x=$\frac{5π}{3}$(m)处时的速度的大小;
(2)一般的曲线运动可以分成许多小段,每一小段都可以看成圆周的一部分,即把整条曲线用系列不同的小圆弧代替,如图2所示,曲线上A点的曲率圆的定义为:通过A点和曲线上紧邻A点两侧的两点做一圆,在极限的情况下,这个圆叫做A点的曲率圆.其半径ρ叫做A点的曲率半径.若小环从x=0处以v2=5$\sqrt{10}$m/s的速度出发沿杆向下运动,到达轨道最低点P时杆对小环的弹力大小为70N,求小环经过轨道最高点Q时杆对小环的弹力多大.

分析 (1)先据曲线方程求出小环运动到x=$\frac{5π}{3}$(m)时的高度,再据机械能守恒求出该点的速度.
(2)先据机械能守恒和牛顿运动定律求出再低点的曲率半径,再利用机械能守恒和牛顿运动定律求出最高点时与杆的作用力.

解答 解:(1)由曲线方程可知:环在x=0处的y的坐标是:y=-$\frac{5}{2}$m,
x=$\frac{5π}{3}$m时,y=5cos(kx+$\frac{2}{3}$π)=5cos($\frac{1}{5}$×$\frac{5}{3}$π+$\frac{2}{3}$π)=-5m,
由动能定理得:mg(5-$\frac{5}{2}$)=$\frac{1}{2}$mv2-$\frac{1}{2}$mv02,代入数据解得:v=5$\sqrt{6}$m/s;
(2)小环从x=0到p过程,由动能定理得:
mg(5-$\frac{5}{2}$)=$\frac{1}{2}$mvP2-$\frac{1}{2}$mv22,代入数据解得:vP=10$\sqrt{3}$m/s,
在p点,由牛顿第二定律得:FN-mg=m$\frac{{v}_{P}^{2}}{ρ}$,代入数据解得:ρ=5m,
小环从p到Q过程,由动能定理得:mg×(-10)=$\frac{1}{2}$mvQ2-$\frac{1}{2}$mvP2
代入数据解得:vQ=10m/s;
在Q点,由牛顿第二定律得:FN1+mg=m$\frac{{v}_{Q}^{2}}{ρ}$,
代入数据解得:FN1=10N;
答:(1)若使小环以v1=10m/s的初速度从x=0处沿杆向下运动,小环运动到x=$\frac{5π}{3}$(m)处时的速度的大小为5$\sqrt{6}$m/s;
(2)小环经过轨道最高点Q时杆对小环的弹力为10N.

点评 本题和数学的上的方程结合起来,根据方程来确定物体的位置,从而利用机械能守恒来解题,题目新颖.

练习册系列答案
相关习题

科目:高中物理 来源: 题型:多选题

5.在物理学的发展过程中,科学家们应用了许多物理学研宄方法,以下关于物理学研究方法的叙述正确的是(  )
A.根据速度的定义式,当△t非常小时,就可以表示物体在t时刻的瞬时速度,该定义运用了极限思想法
B.“总电阻”,“交流电的有效值”用的是“等效替代”的方法
C.在探穷加速度、力和质量三者之间的关系时,先保持质量不变研宄加速度与力的关系,再保持力不变研究加速度与质量的关系,该探究运用了假设法
D.在推导匀变速直线运动位移公式时;把整个运动过程等分成很多小段,每一小段近似看做匀速直线运动,然后把各小段的位移相加,这里运用了微元法

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

6.竖直向上的匀强磁场中,水平放置一单匝金属圆形线圈,线圈所围的面积为0.1m2,线圈的电阻为1Ω.规定图(a)所示感应电流的方向为正方向.磁场的磁感应强度B随时间t的变化规律如图(b)所示,则以下说法正确的是(  )
A.第1s内,线圈具有扩张趋势
B.第3s内,线圈的发热功率最大
C.第4s时,感应电流的方向为负
D.0~5 s时间内,感应电流的最大值为0.1A

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

3.在做“测定金属电阻率”的实验中,待测金属的阻值约为5Ω.

(1)某同学先通过游标卡尺和螺旋测微器分别测量一薄的金属圆片的直径和厚度,读出图1中的示数,游标卡尺所示的金属圆片的直径的测量值为2.98cm,螺旋测微器如图2所示的金属圆片的厚度的测量值为2.130mm.
(2)实验室准备用来测量该电阻值的实验器材有:
电压表V1(量程0~3V,内电阻约15kΩ);
电压表V2(量程0~15V,内电阻约75kΩ);
电流表A1(量程0~3A,内电阻约0.2Ω);
电流表A2(量程0~600mA,内电阻约3Ω);
滑动变阻器R(最大阻值为100Ω,额定电流为0.6A);
电池组E(电动势为3V、内电阻约为0.3Ω);
开关及导线若干.
为使实验能正常进行,减小测量误差,实验要求电表读数从零开始变化,并能多测几组电流、电压值,以便画出电流-电压关系图线,则
①电压表应选用V1(填实验器材的代号)
②电流表应选用A2(填实验器材的代号).
③在虚线框内如图3完成电路原理图.(标出所选器材的代号)
(3)这位同学在一次测量时,电流表、电压表的示数如图4所示.由图中电流表、电压表的读数可计算出待测金属的电阻为5.2Ω.(结果精确到小数点后一位).

查看答案和解析>>

科目:高中物理 来源: 题型:多选题

10.当航天飞机在环绕地球的轨道上飞行时,从中释放一颗卫星,卫星与航天飞机保持相对静止,两者用导线电缆相连,这种卫星称为绳系卫星.现有一颗绳系卫星在地球赤道上空自西向东运行.卫星位于航天飞机正上方,它与航天飞机间的距离是20.5km(远小于航天飞机的轨道半径),卫星所在位置的地磁场为B=4.6×10-5,磁场沿水平方向由南向北.航天飞机和卫星的运行速度为7.6km/s,则(  )
A.缆绳中的感应电动势的大小为3.6×103V
B.缆绳中的感应电动势的大小为7.2×103V
C.缆绳靠近绳系卫星一端的电势高
D.缆绳靠近航天飞机一端的电势高

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

20.如图所示,半径为R的光滑圆形轨道固定在竖直面内.小球A、B质量分别为m、3m(β为待定系数).A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞中无机械能损失,重力加速度为g.试求:
(Ⅰ)第一次碰撞后A、B球能达到的最大高度各为多少?
(Ⅱ)小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度.

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

7.如图所示,在直角坐标系oxy中,第一象限图示区域有沿竖直向上的匀强电场,第四象限有垂直于oxy平面向外的匀强磁场.A点的坐标为(0,L),C点的坐标为(2L,0),现有质量均为m、电荷量均为q的负粒子a、b,分别从A点以不同的速度向右水平射出,速度大小分别为va=v0、vb=$\sqrt{2}$v0,b粒子经过电场直接运动到C点,a粒子进入磁场后才运动到C点.不考虑粒子间的相互作用,不计粒子的重力.求:
(1)b粒子经过C点时的速度?
(2)匀强电场的电场强度E的大小和匀强磁场的磁感应强度B的大小?
(3)若使a、b两粒子同时到达C点,则两粒子从A点先后射出时的时间差是多少?

查看答案和解析>>

科目:高中物理 来源: 题型:选择题

4.如图所示,甲、乙两船在同一河岸边A、B两处,两船船头方向与河岸均成θ角,且恰好对准对岸边C点.若两船同时开始渡河,经过一段时间t,同时到达对岸,乙船恰好到达正对岸的D点.若河宽d、河水流速均恒定,两船在静水中的划行速率恒定,不影响各自的航行,下列判断正确的是(  )
A.两船在静水中的划行速率不同
B.甲船渡河的路程有可能比乙船渡河的路程小
C.两船同时到达D点
D.河水流速为$\frac{dtanθ}{t}$

查看答案和解析>>

科目:高中物理 来源: 题型:解答题

5.如图所示,两根足够长的固定平行金属导轨位于同一水平面内,导轨间的距离为L,导轨上横放着两根导体棒ab和cd,它们与两金属导轨组成闭合回路.已知两根导体棒的质量均为m,导体棒ab在导轨之间的电阻为2R,导体棒cd在导轨之间的电阻为R,导轨光 滑且电阻可忽略不计,在整个导轨平面内都有竖直向上的匀强磁场,磁感强度为B.开始时,导体棒cd静止,导体棒ab具有水平向右的初速度v0,此后的运动过程中,两导体始终与金属导轨垂直且接触良好.求:
(1)闭合回路中电流的最大值;
(2)两导体棒运动的整个过程中回路中产生的焦耳热;
(3)当导体棒ab的速度大小变为$\frac{3}{4}$v0时,导体棒ab发热的功率及其加速度大小.

查看答案和解析>>

同步练习册答案