7£®Èçͼ¼×Ëùʾ£¬Ò»ÖÊÁ¿²»¼ÆµÄ¾¢¶ÈϵÊýΪkµÄÇᵯ»ÉÉ϶˹̶¨£¬Ï¶ËÐüµõÒ»ÖÊÁ¿ÎªmµÄÎï¿é£¬ÏÖÓÃÒ»ÖÊÁ¿ÎªMµÄÍÐÅÌÏòÉÏѹËõµ¯»É£¬ÈçͼÒÒËùʾ£¬µ±ÍÐÅÌͻȻ³·×ßʱÎï¿é¾ßÓÐÏòϵļÓËٶȣ¬Æä´óСΪa£¨a£¾g£©£®Èç¹ûÓÃÒ»ÍâÁ¦×÷ÓÃÔÚÍÐÅÌÉÏ£¬Ê¹ÍÐÅ̺ÍÎï¿é¹²Í¬ÏòÏÂÒÔ$\frac{a}{3}$µÄ¼ÓËÙ¶È×öÔȼÓËÙÖ±ÏßÔ˶¯£®Çó£º
£¨1£©¶þÕß¹²Í¬×öÔȼÓËÙÖ±ÏßÔ˶¯µÄʱ¼ä£»
£¨2£©¸ÃÔ˶¯¹ý³ÌÖпªÊ¼ºÍÖÕֹ˲¼äÍâÁ¦µÄ´óС£®

·ÖÎö £¨1£©µ±ÍÐÅÌͻȻ³·×ßʱÎï¿é¾ßÓÐÏòϵļÓËٶȣ¬Æä´óСΪa£¬¶ÔÎïÌ壬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵõ¯»ÉµÄÉ쳤Á¿£¬µ±Ä¾°åÓëÎïÌå¸ÕÒª·ÖÀëʱ£¬Á½ÎïÖ®¼äµÄµ¯Á¦ÎªÁ㣬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÁ½ÎïÌå¸Õ·ÖÀëʱµ¯»ÉÉ쳤µÄ³¤¶È£®µ¯»ÉµÄÉ쳤µÄ³¤¶ÈµÈÓÚÎïÌåµÄλÒÆ£¬ÓÉλÒƹ«Ê½Çó½âʱ¼ä£®
£¨2£©¶ÔÕûÌåÊÜÁ¦·ÖÎö£¬¶Ô³õĩ״̬ÊÜÁ¦·ÖÎö£¬ÓÉÅ£¶ÙÔ˶¯¶¨ÂÉÇó½âÁ¦µÄ´óС£®

½â´ð ½â£ºµ±ÍÐÅÌͻȻ³·×ßʱÎï¿é¾ßÓÐÏòϵļÓËٶȣ¬Æä´óСΪa£¬¶ÔÎïÌ壬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
   mg+F=ma
ÓÖ  F=kx1¡¡    
µÃ£ºx1=$\frac{m£¨a-g£©}{k}$
µ±Ä¾°åÓëÎïÌå¼´½«ÍÑÀëʱ£¬mÓë°å¼ä×÷ÓÃÁ¦N=0£¬¶ÔÎïÌ壬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɵãº
   mg-F¡ä=m$•\frac{a}{3}$
ÓÖ  F¡ä=kx¡ä2¡¡    
ÓÉ£ºx2=$\frac{m£¨g-\frac{1}{3}a£©}{k}$
¸ù¾ÝλÒÆʱ¼ä¹Øϵ֪x1+x2=$\frac{1}{2}$$•\frac{1}{3}a$t2 µÃ£º
t=$\sqrt{\frac{2£¨{x}_{1}+{x}_{2}£©}{\frac{a}{3}}}$=2$\sqrt{\frac{m}{k}}$
£¨2£©¶ÔÕûÌåÊÜÁ¦·ÖÎöÖª³õ״̬£¨M+m£©g+F-F1=£¨M+m£©•$\frac{1}{3}a$
½áºÏ£¨1£©½âµÃF1=M£¨g-$\frac{1}{3}a$£©$+\frac{2}{3}a$m
¶ÔÕûÌåÊÜÁ¦·ÖÎöÖª³õ״̬£¨M+m£©g+F¡ä-F2=£¨M+m£©•$\frac{1}{3}a$
½áºÏ£¨1£©½âµÃF2=Mg-$\frac{1}{3}Ma$
´ð£º
£¨1£©¶þÕß¹²Í¬×öÔȼÓËÙÖ±ÏßÔ˶¯µÄʱ¼äΪ2$\sqrt{\frac{m}{k}}$£»
£¨2£©¸ÃÔ˶¯¹ý³ÌÖпªÊ¼ºÍÖÕֹ˲¼äÍâÁ¦µÄ´óС·Ö±ðΪM£¨g-$\frac{1}{3}a$£©$+\frac{2}{3}a$£»Mg-$\frac{1}{3}Ma$£®

µãÆÀ ±¾Ìâ¹Ø¼ü·ÖÎöÎïÌå¸Õ·ÖÀëʱÁÙ½çÌõ¼þ£ºµ¯Á¦ÎªÁ㣮ţ¶ÙµÚ¶þ¶¨ÂÉÑо¿Ä³Ò»×´Ì¬Ê±ÎïÌåµÄºÏÁ¦Óë¼ÓËٶȵĹØϵ£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Ò»¸öµÎ¹Ü£¬Æäβ²¿Ì×ÓÐÒ»¸öµ¯ÐÔÏð½ºÇò£¬ÏȰѵιܵIJ£Á§×ì·ÅÈëË®ÖУ¬È»ºó»ýѹÊÍ·ÅÏð½ºÇò£¬Ê¹Ë®½øÈëµÎ¹ÜÄÚ²¿£¬Í¼ÖеιÜÄÚ²¿µÄÒºÃæ¸ß´¦Æ÷ÃóÄÚµÄÒºÃæ0.15m£¬ÄÇôÏð½ºÇòÄÚÆøÌåµÄѹǿÊǶàÉÙ£¨Éè´óÆøѹp0=1.0¡Á105Pa£©£¿Èç¹û°ÑÕâÌ××°ÖÃÒƵ½¸ßɽÉÏ£¬µÎ¹ÜÎüË®µÄЧ¹ûÓÐʲô±ä»¯£¿ÎªÊ²Ã´£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ

18£®´ÅµçʽÒDZíµÄÏßȦͨ³£ÓÃÂÁ¿ò×ö¹Ç¼Ü£¬°ÑÏßȦΧÈÆÔÚÂÁ¿òÉÏ£¬ÕâÑù×öµÄÄ¿µÄÊÇ£¨¡¡¡¡£©
A£®·ÀÖ¹ÎÐÁ÷¶øÉè¼ÆµÄB£®ÀûÓÃÎÐÁ÷¶øÉè¼ÆµÄ
C£®Æðµç´Å×èÄáµÄ×÷ÓÃD£®Æðµç´ÅÇý¶¯µÄ×÷ÓÃ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®1932Ä꣬ÀÍÂ×˹ºÍÀûÎÄ˹Éè¼Æ³öÁË»ØÐý¼ÓËÙÆ÷£®»ØÐý¼ÓËÙÆ÷µÄ¹¤×÷Ô­ÀíÈçͼËùʾ£¬ÖÃÓÚ¸ßÕæ¿ÕÖеÄDÐνðÊôºÐ°ë¾¶ÎªR£¬Á½ºÐ¼äµÄÏÁ·ìºÜС£¬´øµçÁ£×Ó´©¹ýµÄʱ¼ä¿ÉÒÔºöÂÔ²»¼Æ£¬´Å¸ÐӦǿ¶ÈΪBµÄÔÈÇ¿´Å³¡ÓëºÐÃæ´¹Ö±£®A´¦Á£×ÓÔ´²úÉúµÄÁ£×Ó£¬ÖÊÁ¿Îªm¡¢µçºÉÁ¿Îª+q£¬ÔÚ¼ÓËÙµçѹΪUµÄ¼ÓËÙÆ÷Öб»¼ÓËÙ£¬¼ÓËÙ¹ý³ÌÖв»¿¼ÂÇÏà¶ÔÂÛЧӦºÍÖØÁ¦×÷Ó㬲»¼ÆÁ£×ӵijõËٶȣ®
£¨1£©Á£×ÓµÚ1´Î¡¢µÚ2´Î¾­¹ýÏÁ·ìºó£¬Ôڴų¡ÖÐÔ˶¯µÄ°ë¾¶·Ö±ðΪr1¡¢r2£¬Çó$\frac{{r}_{2}}{{r}_{1}}$£»
£¨2£©ÇóÁ£×Ó´Ó¾²Ö¹¿ªÊ¼¼ÓËÙµ½³ö¿Ú´¦ËùÐèµÄʱ¼ät£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÈçͼËùʾ£¬Ë®Æ½·ÅÖõÄÆø¸×AºÍÈÝ»ýΪVB=3.6LµÄÈÝÆ÷B£¬ÓÉÒ»ÈÝ»ý¿ÉºöÂÔ²»¼ÆµÄ³¤Ï¸¹Ü¾­·§ÃÅCÏàÁ¬£¬Æø¸×AÄÚÓÐÒ»»îÈûD£¬Ëü¿ÉÒÔÎÞĦ²ÁµØÔÚÆø¸×ÄÚ»¬¶¯£¬A·ÅÔÚζȺãΪT1=300K£¬Ñ¹Ç¿Îªp0=1.0¡Á105PaµÄ´óÆøÖУ¬B½þÔÚT2=400KµÄºãβÛÄÚ£¬BµÄÆ÷±Úµ¼ÈÈÐÔÄÜÁ¼ºÃ£¬¿ªÊ¼Ê±CÊǹرյģ¬AÄÚ×°ÓÐζÈΪT1=300K£¬Ìå»ýΪVA=2.4LµÄÆøÌ壬BÄÚûÓÐÆøÌ壬´ò¿ª·§ÃÅC£¬Ê¹ÆøÌåÓÉAÁ÷ÈëB£¬µÈµ½»îÈûDÍ£Ö¹Òƶ¯Ò»¶Îʱ¼äºó£¬ÇóÒÔÏÂÁ½ÖÖÇé¿öÏÂÆøÌåµÄÌå»ýºÍѹǿ£®
¢ÙÆø¸×A¡¢»îÈûDºÍϸ¹Ü¶¼ÊǾøÈȵģ»
¢ÚAµÄÆ÷±Úµ¼ÈÈÐÔÄÜÁ¼ºÃ£¬ÇÒºãβÛζȵ÷¸ßΪ500K£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÖØΪ2¡Á104NµÄÆû³µ£¬ÔÚˮƽ·ÃæÉÏÐÐÊ»£¬Èô±£³Ö40kWµÄÊä³ö¹¦Âʲ»±ä£¬×èÁ¦Îª³µÖصÄ0.02±¶£¬Çó£º
£¨1£©ÐÐÊ»150mºó£¬ËٶȴÓ10m/sÔö¼Óµ½20m/s£¬´ËʱÆû³µµÄ¼ÓËٶȣ»
£¨2£©Æû³µÒԺ㶨µÄ¹¦ÂÊÆô¶¯ºóÄÜ´ïµ½µÄ×î´óËٶȣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÈçͼËùʾ£¬Ò»Ð¡º¢´Ó»¬ÌÝÉÏÓɾ²Ö¹¿ªÊ¼¼ÓËÙ»¬Ï£¬ÔÚÕâÒ»¹ý³ÌÖУ¨¡¡¡¡£©
A£®Ð¡º¢µÄ¹ßÐÔ±ä´óB£®Ð¡º¢´¦ÓÚʧÖØ״̬
C£®Ð¡º¢´¦ÓÚ³¬ÖØ״̬D£®Ð¡º¢µÄ»úеÄÜÊغã

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ

16£®Ä³ÊµÑéС×éÀûÓÃͼ£¨a£©ËùʾʵÑé×°Öü°Êý×Ö»¯ÐÅϢϵͳ̽¾¿¡°ÍâÁ¦×ö¹¦ÓëС³µ¶¯Äܱ仯µÄ¹Øϵ¡±£®ÊµÑéʱ½«Ð¡³µÀ­µ½Ë®Æ½¹ìµÀµÄOλÖÃÓɾ²Ö¹ÊÍ·Å£¬ÔÚС³µ´ÓOλÖÃÔ˶¯µ½ AλÖùý³ÌÖУ¬¾­¼ÆËã»ú´¦ÀíµÃµ½Á˵¯»Éµ¯Á¦ÓëС³µÎ»ÒƵĹØϵͼÏßÈçͼ£¨b£©Ëùʾ£¬»¹µÃµ½ÁËС³µÔÚ AλÖõÄËٶȴóСvA£»ÁíÍâÓõç×Ó³Ó²âµÃС³µ£¨º¬Î»ÒÆ´«¸ÐÆ÷·¢ÉäÆ÷£©µÄ×ÜÖÊÁ¿Îªm£®»Ø´ðÏÂÁÐÎÊÌ⣺

£¨1£©ÓÉͼ£¨b£©¿ÉÖª£¬Í¼£¨a£©ÖÐAλÖõ½Á¦´«¸ÐÆ÷µÄ¾àÀë´óÓÚ£¨¡°Ð¡ÓÚ¡±¡¢¡°µÈÓÚ¡±»ò¡°´óÓÚ¡±£©µ¯»ÉÔ­³¤£®
£¨2£©Ð¡³µ´ÓOλÖÃÔ˶¯µ½AλÖùý³ÌÖе¯»É¶ÔС³µËù×öµÄ¹¦W=$\frac{{F}_{0}+{F}_{A}}{2}$•xA£¬Ð¡³µµÄ¶¯ÄܸıäÁ¿¡÷Ek=$\frac{1}{2}$m${v}_{A}^{2}$£®£¨ÓÃm¡¢vA¡¢FA¡¢F0¡¢xAÖи÷Ïà¹ØÎïÀíÁ¿±íʾ£©
£¨3£©Èô½«µ¯»É´ÓС³µÉÏжÏ£¬¸øС³µÒ»³õËÙ¶Èv0£¬ÈÃС³µ´Ó¹ìµÀÓÒ¶ËÏò×ó¶Ë»¬¶¯£¬ÀûÓÃλÒÆ´«¸ÐÆ÷ºÍ¼ÆËã»úµÃµ½Ð¡³µµÄËÙ¶ÈËæʱ¼ä±ä»¯µÄͼÏßÈçͼ£¨c£©Ëùʾ£¬ÔòС³µËùÊܹìµÀĦ²ÁÁ¦µÄ´óСf=m$\frac{{v}_{0}}{{t}_{m}}$£®£¨ ÓÃm¡¢v0¡¢tmÖи÷Ïà¹ØÎïÀíÁ¿±íʾ£©
£¨4£©×ۺϲ½Ö裨2£©¡¢£¨3£©£¬¸ÃʵÑéËùҪ̽¾¿µÄ¡°ÍâÁ¦×ö¹¦ÓëС³µ¶¯Äܱ仯µÄ¹Øϵ¡±±í´ïʽÊÇ£¨F0+FA-2m$\frac{{v}_{0}}{{t}_{m}}$£©xA=mvA2£®£¨ÓÃm¡¢vA¡¢FA¡¢F0¡¢xA¡¢v0¡¢tmÖи÷Ïà¹ØÎïÀíÁ¿±íʾ£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Í¬²½ÎÀÐÇÀëµØÐľàÀëΪr£¬ÔËÐÐËÙ¶ÈΪv1£¬¼ÓËÙ¶ÈΪa1£¬µØÇò³àµÀÉϵÄÎïÌåËæµØÇò×ÔתµÄÏòÐļÓËÙ¶ÈΪa2£¬ÏßËÙ¶ÈΪv2£®µÚÒ»ÓîÖæËÙ¶ÈΪv3£¬µÚÒ»ÓîÖæËٶȶÔÓ¦µÄÏòÐļÓËÙ¶ÈΪa3£¬µØÇò°ë¾¶ÎªR£¬Çó£º
a1£ºa2£ºa3=rR2£º{R3£ºr3R3£ºr3£»v1£ºv2£ºv3=r$\sqrt{R}$£º$\sqrt{{R}^{3}}$£º$\sqrt{{r}^{3}}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸