精英家教网 > 高中物理 > 题目详情
精英家教网如图,将两小球以20
5
m/s的初速度分别从A、B两点相差1s先后水平相向抛出,小球从A点抛出后经过时间t,两小球恰好在空中相遇,且速度方向相互垂直,不计空气阻力,取g=10m/s2,则抛出点A、B间的水平距离是(  )
A、180
5
m
B、140
5
m
C、200m
D、100m
分析:两球相差2s抛出,根据竖直方向的速度vA=gt,vB=g(t-1),结合两球的速度方向相互垂直,利用几何关系进而求出下落的时间,即可求出两点的水平距离.
解答:解:A经过t时间两球的速度方向相互垂直,此时B运动时间为(t-1)s,
根据几何关系可得:tanθ=
v0
gt
=
g(t-1)
v0

解得:t=5s,
则B运动时间为t-1=4s
故AB两点的水平距离X=v0t+v0(t-1)=5v0+4v0=9v0180
5
m

故选:A
精英家教网
点评:考查平抛运动的规律,抓住竖直方向的速度垂直,利用运动的分解列出等式.注意三角函数等式的正确性.
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

某同学在做“利用单摆测重力加速度”实验中,先测得摆线长为97.20cm;用20分度的游标卡尺测小球直径如图所示,然后用秒表记录了单摆全振动50次所用的时间为100.0s.则
(1)记录时间应从摆球经过
平衡位置
平衡位置
开始计时,小球直径为
2.990
2.990
cm,测得重力加速度g值为
9.73
9.73
 m/s2.(保留小数点后两位有效数字)
(2)如果他在实验中误将49次全振动数为50次,测得的g值
偏大
偏大
.(填“偏大”或“偏小”或“准确”)
(3)如果该同学在测摆长时忘记了加摆球的半径,则测量结果
偏小
偏小
(填“偏大”或“偏小”或“准确”);但是他以摆长(l)为纵坐标、周期的二次方(T2)为横坐标作出了l-T2图线,由图象测得的图线的斜率为k,则测得的重力加速度g=
2k
2k
.(用字母表示即可).此时他用图线法求得的重力加速度
准确
准确
.(选填“偏大”,“偏小”或“准确”)

查看答案和解析>>

科目:高中物理 来源: 题型:

在如图所示的电路中,两平行正对金属板A、B水平放置,两板间的距离d=4.0cm.电源电动势E=400V,内电阻r=20Ω,电阻R1=1980Ω.闭合开关S,待电路稳定后,将一带正电的小球(可视为质点)从B板上的小孔以初速度v0=1.0m/s竖直向上射入两板间,小球恰好能到达A板.若小球所带电荷量q=1.0×10-7C,质量m=2.0×10-4kg,不考虑空气阻力,忽略射入小球对电路的影响,取g=10m/s2.求:
(1)A、B两金属板间的电压的大小U;
(2)滑动变阻器消耗的电功率P
(3)电源的效率η.

查看答案和解析>>

科目:高中物理 来源: 题型:阅读理解

(1)为了探究影响平抛运动水平射程的因素,某同学通过改变抛出点的高度及初速度的方法做了6次实验,实验数据记录如下表.以下探究方案符合控制变量法的是
B
B

序号 抛出点的高度(m) 水平初速度(m/s) 水平射程(m)
1 0.20 2.0 0.40
2 0.20 3.0 0.60
3 0.45 2.0 0.60
4 0.45 4.0 1.20
5 0.80 2.0 0.80
6 0.80 6.0 2.40
A.若探究水平射程与初速度的关系,可用表中序号为1、3、5的实验数据
B.若探究水平射程与高度的关系,可用表中序号为1、3、5的实验数据
C.若探究水平射程与高度的关系,可用表中序号为2、4、6的实验数据
D.若探究水平射程与初速度的关系,可用表中序号为2、4、6的实验数据

(2)三个同学根据不同的实验条件,进行了“探究平抛运动规律”的实验:
a.甲同学采用如图甲所示的装置.用小锤打击弹性金属片,金属片把球沿水平方向弹出,同时球被松开,自由下落,观察到两球同时落地.改变小锤打击的力度,即改变球被弹出时的速度,两球仍然同时落地,这说明
平抛运动的竖直分运动是自由落体运动
平抛运动的竖直分运动是自由落体运动

b.乙同学采用如图乙所示的装置.两个相同的弧形轨道M、N,分别用于发射小铁球P、Q,其中N的末端与可看作光滑的水平板相切;两轨道上端分别装有电磁铁C、D,调节电磁铁C、D的高度,使AC=BD,从而保证小铁球P、O在轨道出口处的水平初速度V0相等.现将小铁球P、Q分别吸在电磁铁C、D上,然后切断电源,使两小铁球能以相同的初速度V0同时分别从轨道M、N的下端射出.实验可观察到的现象是P、Q两球相碰.仅仅改变弧形轨道M的高度,重复上述实验,仍能观察到相同的现象,这说明
平抛运动的水平分运动是匀速直线运动
平抛运动的水平分运动是匀速直线运动

c.丙同学采用频闪摄影的方法拍摄到如图丙所示的“小球做平抛运动”的照片.图中每个小方格的边长为1.25cm,则该小球平抛的初速度大小为
0.71
0.71
m/s.(计算结果保留二位有效数字)

查看答案和解析>>

科目:高中物理 来源: 题型:阅读理解

(2007?浙江)(1)用示波器观察频率为900Hz的正弦电压信号.把该信号接入示波器Y输入.
①当屏幕上出现如图1所示的波形时,应调节
竖直位移(或↑↓)
竖直位移(或↑↓)
钮.如果正弦波的正负半周均超出了屏幕的范围,应调节
衰减(或衰减调节)
衰减(或衰减调节)
钮或
y增益
y增益
钮,或这两个钮配合使用,以使正弦波的整个波形出现在屏幕内.
②如需要屏幕上正好出现一个完整的正弦波形,应将
扫描范围
扫描范围
钮置于
1k挡位
1k挡位
位置,然后调节
扫描微调
扫描微调
钮.
(2)碰撞的恢复系数的定义为e=
|ν2-ν1|
ν20-ν10
,其中v10和v20分别是碰撞前两物体
的速度,v1和v2分别是碰撞后物体的速度.弹性碰撞的恢复系数e=1,非弹性碰撞的e<1.某同学借用验证动力守恒定律的实验装置(如图所示)验证弹性碰撞的恢复系数是否为1,实验中使用半径相等的钢质小球1和2(它们之间的碰撞可近似视为弹性碰撞),且小球1的质量大于小球2的质量.
实验步骤如下:
安装好实验装置,做好测量前的准备,并记下重锤线所指的位置O.
第一步,不放小球2,让小球1从斜槽上A点由静止滚下,并落在地面上.重复多次,用尽可能小的圆把小球的所落点圈在里面,其圆心就是小球落点的平均位置.
第二步,把小球2 放在斜槽前端边缘处C点,让小球1从A点由静止滚下,使它们碰撞.重复多次,并使用与第一步同样的方法分别标出碰撞后小球落点的平均位置.
第三步,用刻度尺分别测量三个落地点的平均位置离O点的距离,即线段OM、OP、ON的长度.
上述实验中,
①P点是
在实验的第一步中小球1落点的
在实验的第一步中小球1落点的
平均位置,M点是
小球1与小球2碰后小球1落点的
小球1与小球2碰后小球1落点的
平均位置,N点是
小球2落点的
小球2落点的
平均位置.
②请写出本实验的原理
小球从槽口C飞出后作平抛运动的时间相同,假设为 t,则有op=v10t,OM=v1t,ON=v2t
,小球2碰撞前静止,即v20=0
小球从槽口C飞出后作平抛运动的时间相同,假设为 t,则有op=v10t,OM=v1t,ON=v2t
,小球2碰撞前静止,即v20=0
,写出用测量量表示的恢复系数的表达式
e=
v2-v1
v10-v20
=
ON-OM
OP-0
=
ON-OM
OP
e=
v2-v1
v10-v20
=
ON-OM
OP-0
=
ON-OM
OP

③三个落地点距O点的距离OM、OP、ON与实验所用的小球质量是否有关系?

查看答案和解析>>

科目:高中物理 来源: 题型:

如图所示,竖直面内水平放置的两平行金属导轨MN、PQ足够长,间距L=1m,导轨电阻不计.两导轨间存在垂直于纸面向里B=1T的匀强磁场,导轨右端N、Q连接一电路,电阻R=20Ω.间距d=0.2m的两平行金属板水平放置,板间分布有与导轨间完全相同的匀强磁场.细金属棒ab垂直放置在导轨MN、PQ上,并与导轨接触良好.金属棒的电阻r0=1Ω,使金属棒以恒定速度v0=15m/s沿导轨向左匀速运动,闭合开关S,板间电场视为匀强电场,将一带正电的小球以初速度v=0.1m/s沿两板间中线水平射入板间.设滑动变阻器接入电路的阻值为Rx,忽略空气对小球的作用,取g=10m/s2
(1)当Rx=29Ω时,电阻R两端的电压是多少?
(2)若小球进入板间做匀速圆周运动并与板相碰,碰时速度方向与初速度方向间的夹角为60°,则Rx是多少?

查看答案和解析>>

同步练习册答案