精英家教网 > 高中物理 > 题目详情
如题图1所示的坐标系内,在x0(x0>0)处有一垂直工轴放置的挡板.在y轴与挡板之间的区域内存在一个与xoy平珏垂直且指向纸内的匀强磁场,磁感应强度B=0.2T.位于坐标原点O处的粒子源向xoy平面内发射出大量同种带正电的粒子,所有粒子的初速度大小均为vo=1.0×106m/s,方向与x轴正方向的夹角为θ,且0≤θ≤90°.该粒子的比荷为
qm
=1.0×108C/kg
,不计粒子所受重力和粒子间的相互作用,粒子打到挡板上后均被挡板吸收.
(1)求粒子在磁场中运动的轨道半径R:
(2)如题图2所示,为使沿初速度方向与x轴正方向的夹角θ=30°射出的粒子不打到挡板上,则x0必须满足什么条件?该粒子在磁场中运动的时间是多少?
(3)若x0=5.0×10-2m,求粒子打在挡板上的范围(用y坐标表示),并用“”图样在题图3中画出粒子在磁场中所能到达的区域:
分析:(1)粒子在磁场中由洛伦兹力充当向心力做匀速圆周运动,根据牛顿第二定律求出轨道半径.
(2)粒子恰好不打到挡板上,其运动轨迹与挡板相切,画出轨迹,由几何知识求出x0,即可得到x0满足的条件.根据粒子轨道对应的圆心角θ,由公式t=
θ
T求出时间.
(3)若x0=5.0×10-2m,画出粒子的运动轨迹,由几何知识求出粒子打在挡板上的范围.
解答:解:(1)由牛顿第二定律得:qvB=m
v
2
0
R

解得:R=
mv0
qB
=5.0×10-2m
(2)如图所示,设粒子的运动轨迹恰好与挡板相切,由几何关系得:
x0=R+Rsinθ
解得:x0=7.5×10-2 m
为使该粒子不打到挡板上:x0≥7.5×10-2 m
粒子在磁场中运动的周期为T:
T=
2πR
v
=
2πm
Bq
=π×10-7s
由几何知识可知,粒子的轨道对应的圆心角为:α=2θ+π=
4
3
π

则该粒子在磁场中运动的时间:t=
4
3
π
T
=
2
3
T
=
2
3
π×10-7s

(3)若x0=5.0×10-2 m,则 x0=R
当粒子沿着-y方向入射时,将打在挡板上的A点,其纵坐标:yA=-R=5.0×10-2 m;
当粒子沿着+x方向入射时,粒子的运动轨迹恰好与挡板相切于B点,其纵坐标:yB=R=5.0×10-2 m
则粒子打在挡板上的范围为:-5.0×10-2 m≤y<5.0×10-2 m.
粒子在磁场中所能到达的区域如图所示.
答:
(1)粒子在磁场中运动的轨道半径R是5.0×10-2m;
(2)为使该粒子不打到挡板上,x0≥7.5×10-2 m,该粒子在磁场中运动的时间是
2
3
π×10-7s

(3)粒子打在挡板上的范围为-5.0×10-2 m≤y<5.0×10-2 m.
点评:本题的解题关键是画出轨迹,运用几何知识求出相关的距离,确定圆心角,求解粒子运动的时间.
练习册系列答案
相关习题

科目:高中物理 来源: 题型:

如下图所示,A、B间为匀强磁场,可使电子在水平方向偏转,C、D板间为匀强电场,可使电子在竖直方向偏转。当a、b和c、d间不接电压时,电子枪发出的电子经加速后以v=1.6×106 m/s的速度沿水平直线MN垂直打到竖直的荧光屏P的中心O上。以O为原点,以竖直方向为y轴,水平方向为x轴建立坐标系。当在a、b和c、d间分别接上恒定电压后,电子在磁场中沿-x方向偏转了0.02 m,电子从磁场射出后立即进入电场,且从电场的右边界射出,最后打到屏上的(-0.14,-0.15)点。已知磁场区沿MN方向的宽度为0.06 m,电场区沿MN方向的宽度为0.08 m,电场右边缘到屏的距离为0.08 m。电子的质量m=9.0×10 -31 kg,电荷量e=-1.6×10-19 C

(1)定性说明电子在磁场区、电场区、无场区的运动情况。

(2)求出磁感应强度B和电场强度E的大小。(如需作图辅助解题,请在题图中作图)

查看答案和解析>>

同步练习册答案