·ÖÎö £¨1£©¼ÓÉÏÔÈÇ¿µç³¡ºó£¬A×öÔȼÓËÙÔ˶¯£¬BÈÔ¾²Ö¹£¬Óɶ¯Äܶ¨ÀíÇóA¡¢BµÚÒ»´Î¸ÕÒª·¢ÉúÅöײʱAÇòµÄËٶȣ®
£¨2£©Á½Çò·¢Éúµ¯ÐÔÅöײ£¬ÓÉÓÚÁ½ÇòµÄÖÊÁ¿£¬ËùÒÔÅöײºóÁ½Õß½»»»Ëٶȣ¬´ËºóB×öÔÈËÙÔ˶¯£¬A×ö³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§Î»Òƹ«Ê½½áºÏÇó½â£®
£¨3£©¸ù¾ÝÉÏÌâµÄ½á¹û£¬Ñо¿Ã¿´ÎÅöײºóµÄ¹æÂÉ£¬ÔÙÇó½â´ÓµÚ1´ÎÅöײ½áÊøµ½µÚ19´ÎÅöײ¸ÕÒª·¢ÉúËù¾ÀúµÄʱ¼ä£®
½â´ð ½â£º£¨1£©´ÓAÇò¿ªÊ¼Ô˶¯µ½µÚÒ»´ÎÅöײ֮ǰ£¬¶ÔA£¬Óɶ¯Äܶ¨ÀíÓÐ
qEl=$\frac{1}{2}m{v}_{1}^{2}$
¿ÉµÃ v1=$\sqrt{\frac{2qEl}{m}}$
£¨2£©µÚÒ»´Î·¢ÉúÅöײºóÁ½Çò½»»»Ëٶȣ¬AµÄËٶȱäΪ0£¬BµÄËٶȱäΪv1£¬ÉèСÇòAµÄ¼ÓËÙ¶ÈΪa£¬µÚÒ»´ÎÅöºó½áÊøµ½µÚ¶þ´Î·¢ÉúÅöײǰ˲¼ä¾¹ýʱ¼äΪt2£¬Ôò
¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÖª£ºqE=ma
ÓÉλÒÆʱ¼ä¹ØϵÓУºv1t2=$\frac{1}{2}a{t}_{2}^{2}$
½âµÃ t2=$\frac{2}{qE}$$\sqrt{2qElm}$
£¨3£©ÉèµÚ¶þ´Î·¢ÉúÅöײǰAµÄËÙ¶ÈΪv2£¬Ôò v2=at2=2v1£»
µ±A¡¢BµÚ¶þ´ÎÅöײºó½»»»Ëٶȣ¬BµÄËٶȱäΪ2v1£¬AµÄËٶȱäΪv1£»µÚÈý´ÎÅöײÓÖÊÇÏà²îv1µÄËٶȿªÊ¼£¬A¼ÓËÙ×·»÷B£¬ËùÒÔËùÓÃʱ¼äÓët2Ïàͬ£¬ÒÔ´ËÀàÍÆ£¬µÚ1´ÎÕýÅöµ½µÚ19´ÎÕýÅöÖ®¼äµÄʱ¼ä t19=t18=¡=t2=$\frac{2}{qE}$$\sqrt{2qElm}$
¹Ê×Üʱ¼ä t=18t2=$\frac{36}{qE}$$\sqrt{2qElm}$
´ð£º
£¨1£©A¡¢BµÚÒ»´Î¸Õ Òª·¢ÉúÅöײʱ£¬AÇòµÄËÙ¶ÈÊÇ$\sqrt{\frac{2qEl}{m}}$£®
£¨2£©´ÓA¡¢BµÚÒ»´Î·¢ÉúÅöײµ½µÚ¶þ´ÎÅöײ¾Àúʱ¼äΪ$\frac{2}{qE}$$\sqrt{2qElm}$£®
£¨3£©´ÓµÚ1´ÎÅöײ½áÊøµ½µÚ19´ÎÅöײ¸ÕÒª·¢ÉúËù¾ÀúµÄʱ¼äÊÇ$\frac{36}{qE}$$\sqrt{2qElm}$£®
µãÆÀ ±¾ÌâÒÔ´øµçÁ£×ÓÔڵ糡ÖеÄÔ˶¯ÎªºËÐÄÃüÌ⣬¹Ø¼üÒªÕýÈ··ÖÎöÅöײµÄʱ¼ä¼ä¸ôÊÇ·ñÏàµÈ£¬È»ºóÀûÓò»ÍêÈ«¹éÄɵķ½·¨µÃ³ö½áÂÛ£®µ±È»»¹¿ÉÒÔÀûÓÃͼÏóÀ´¼ÆËã³öʱ¼ä¼ä¸ô£®
Ä꼶 | ¸ßÖÐ¿Î³Ì | Ä꼶 | ³õÖÐ¿Î³Ì |
¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍƼö£¡ |
¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍƼö£¡ |
¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍƼö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍƼö£¡ |
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | ¾²Ä¦²ÁÁ¦×ÜÊDz»×ö¹¦ | |
B£® | »¬¶¯Ä¦²ÁÁ¦¿ÉÒÔ²»×ö¹¦ | |
C£® | Á¦¶ÔÎïÌå²»×ö¹¦£¬ÎïÌåÒ»¶¨¾²Ö¹ | |
D£® | ÐÐÐÇÈÆÌ«ÑôÔ˶¯Ê±£¬Ì«Ñô¶ÔÐÐÐǵÄÒýÁ¦Ê¼ÖÕ²»×ö¹¦ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | Á£×ÓµÄËٶȼӱ¶£¬ÖÜÆÚ¼õ°ë | B£® | Á£×ӵĽÇËٶȼӱ¶£¬¹ìµÀ°ë¾¶¼õ°ë | ||
C£® | Á£×ÓµÄËÙÂʲ»±ä£¬¼ÓËٶȼõ°ë | D£® | Á£×ÓµÄËÙÂʲ»±ä£¬ÖÜÆÚ²»±ä |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | µç·×ܵç×è±äС£¬Â·¶Ëµçѹ±äС£¬µçÔ´µç¶¯ÊƲ»±ä | |
B£® | µç·×ܵç×è±äС£¬¸É·µçÁ÷±ä´ó£¬µçÔ´Êä³ö¹¦Âʱä´ó | |
C£® | µç·×ܵç×è±äС£¬µçÔ´µÄЧÂʱäµÍ | |
D£® | L1±ä°µ£¬L2±äÁÁ£¬L3Ò²±äÁÁ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | ¹ú¼Êµ¥Î»ÖÆÖУ¬Á¦Ñ§·¶Î§ÄÚ£¬¹æ¶¨µÄ»ù±¾Á¿ÊÇ£ºÇ§¿Ë£¬Ã×£¬Ãë | |
B£® | ÆøÎÂΪ6¡æ£¬ÆäÖе¥Î»¡æΪ¹ú¼Êµ¥Î»ÖеÄÈÈÁ¦Ñ§Î¶ȵĵ¥Î» | |
C£® | ÎïÀíÁ¿µÄ¶¨ÒåʽÊÇ£ºB=$\frac{F}{IL}$£¬ÔòBµÄµ¥Î»ÊÇ$\frac{kg}{{A{s^2}}}$ | |
D£® | Èç¹ûF=G•$\frac{{{m_i}{m_2}}}{r^2}$ÊÇÕýÈ·µÄ£¬Ôò±ÈÀý³£ÊýGµÄµ¥Î»Îª£ºN•$\frac{m^2}{{k{g^2}}}$ |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
A£® | $\frac{U}{{I}_{1}-{I}_{2}}$=R2 | B£® | $\frac{U}{{I}_{2}}$=$\frac{{R}_{1}{R}_{2}}{{R}_{1}+{R}_{2}}$ | ||
C£® | I2U=$\frac{{U}^{2}}{{R}_{1}}$+$\frac{{U}^{2}}{{R}_{2}}$ | D£® | I2U=£¨I1-I2£©U+I22R1 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£º¶àÑ¡Ìâ
A£® | Ù¤ÀûÂÔÑо¿×ÔÓÉÂäÌåÔ˶¯Ê±£¬Óöµ½µÄÀ§ÄÑ°üÀ¨ÎÞ·¨×¼È·²âÁ¿ÏÂÂäʱ¼ä | |
B£® | Å£¶ÙµÚÒ»¶¨ÂÉÊÇʵÑ鶨ÂÉ | |
C£® | ÑÇÀïÊ¿¶àµÂÈÏΪÎïÌåµÄÔ˶¯²»ÐèÒªÁ¦À´Î¬³Ö | |
D£® | Å£¶ÙµÚÒ»¶¨ÂÉ˵Ã÷Á¦ÊǸıäÎïÌåÔ˶¯×´Ì¬µÄÔÒò |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÎïÀí À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
°Ù¶ÈÖÂÐÅ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com